Recap of Undecidability Proof

- **The Question**: Are there languages that are not decidable by any Turing machine (TM)?
 - i.e. Are there problems that cannot be solved by any algorithm?
- Consider the language:
 \[A_{TM} = \{ <M,w> \mid M \text{ is a TM and } M \text{ accepts } w \} \]
 (Recall that \(<A,B,…>\) is just a string encoding the objects A, B, …)
- What can we say about \(A_{TM}\)?

\[A_{TM} \text{ is Turing-recognizable} \]

- \(A_{TM} \text{ is Turing-recognizable: Recognizer TM } R \text{ for } A_{TM}: \)
 - On input string \(<M,w>\):
 - Simulate \(M\) on \(w\).
 - ACCEPT \(<M,w>\) if \(M\) halts & accepts \(w\);
 - REJECT \(<M,w>\) if \(M\) halts & rejects
 (Loop (& thus reject \(<M,w>\)) if \(M\) ends up looping).
 - \(R\) accepts \(<M,w>\) iff \(M\) accepts \(w\), i.e. \(L(R) = A_{TM}\)

Yeah, but is it decidable?!!
Is A_{TM} decidable?

- No, $A_{TM} = \{<M,w>| M \text{ is a TM and } M \text{ accepts } w\}$ is undecidable! 1-slide Proof (by Contradiction):
 1. Assume A_{TM} is decidable \Rightarrow there’s a decider H, $L(H) = A_{TM}$
 2. H on $<M,w> = \text{ACC}$ if M accepts w
 \hspace{1cm} $= \text{REJ}$ if M rejects w (halts in q_{REJ} or loops on w)
 3. Construct new TM D: On input $<M>$:
 - Simulate H on $<M,<M>>$ (here, $w = <M>$)
 - If H accepts, then REJ input $<M>$
 - If H rejects, then ACC input $<M>$
 4. What happens when D gets $<D>$ as input?
 - D rejects $<D>$ if H accepts $<D,<D>>$ if D accepts $<D>$
 - D accepts $<D>$ if H rejects $<D,<D>>$ if D rejects $<D>$
 Either way: Contradiction! D cannot exist $\Rightarrow H$ cannot exist
 Therefore, A_{TM} is not a decidable language.

Undecidability Proof uses Diagonalization:

Input strings $<M_1> <M_2> <M_3> \ldots$ $<M_1> <M_2> <M_3> \ldots <D>$

<table>
<thead>
<tr>
<th>List of TMs</th>
<th>M_1</th>
<th>M_2</th>
<th>M_3</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_1</td>
<td>ACC</td>
<td>REJ</td>
<td>loop</td>
<td></td>
</tr>
<tr>
<td>M_2</td>
<td>REJ</td>
<td>loop</td>
<td>ACC</td>
<td></td>
</tr>
<tr>
<td>M_3</td>
<td>ACC</td>
<td>ACC</td>
<td>REJ</td>
<td></td>
</tr>
</tbody>
</table>

If H exists D outputs opposite of diagonal

D on $<M_i>$ accepts if and only if M_i on $<M_i>$ rejects.
So, D on $<D>$ will accept if and only if D on $<D>$ rejects!
A contradiction $\Rightarrow H$ cannot exist!
Therefore, A_{TM} is not a decidable language.
One Last Concept: Reducibility

✦ How do we show a new problem B is undecidable?

✦ Idea: Show that \(A_{TM} \) is reducible to the new problem B
 ➔ What does this mean and how do we show this?

✦ Show that if B was decidable, then you can use the decider for B as a subroutine to decide \(A_{TM} \)
 ➔ Contradiction, therefore B must also be undecidable

The Halting Problem is Undecidable (Turing, 1936)

✦ Halting Problem: Does TM M halt on input w?
 ➔ Equivalent language: \(A_H = \{ <M,w> \mid \text{TM M halts on input w} \} \)
 ➔ Need to show \(A_H \) is undecidable
 ➔ We know \(A_{TM} = \{ <M,w> \mid \text{TM M accepts w} \} \) is undecidable

✦ Show \(A_{TM} \) is reducible to \(A_H \) (Theorem 5.1 in text)
 ➔ Suppose \(A_H \) is decidable \(\Rightarrow \) there’s a decider \(M_H \) for \(A_H \)
 ➔ Then, we can construct a decider \(D_{TM} \) for \(A_{TM} \):
 On input \(<M,w> \), run \(M_H \) on \(<M,w> \).
 - If \(M_H \) rejects, then REJ (this takes care of M looping on w)
 - If \(M_H \) accepts, then simulate M on w until M halts
 - If M accepts, then ACC input \(<M,w> \); else REJ
 \(L(D_{TM}) = A_{TM} \Rightarrow A_{TM} \) is decidable! Contradiction \(\Rightarrow A_H \) is undecidable

✦ E.g. 2: Show \(E_{TM} = \{ <M> \mid \text{M is a TM and } L(M) = \emptyset \} \) is undecidable (see Theorem 5.2 in the text)
Are There Languages That Are Not Even Recognizable?

- \(A_{TM} \) and \(A_H \) are undecidable but Turing-recognizable
 - Are there languages that are not even Turing-recognizable?

- What happens if both \(A \) and \(\overline{A} \) are Turing-recognizable?
 - There exist TMs \(M1 \) and \(M2 \) that recognize \(A \) and \(\overline{A} \)
 - **Can construct a decider for \(A \)**
 1. On input \(w \):
 1. Simulate \(M1 \) and \(M2 \) on \(w \) one step at a time, alternating between them.
 2. If \(M1 \) accepts, then ACC \(w \) and halt; if \(M2 \) accepts, REJ \(w \) and halt.

- \(A \) and \(\overline{A} \) are both Turing-recognizable iff \(A \) is decidable

- **Corollary:** \(\overline{A}_{TM} \) and \(\overline{A}_H \) are not Turing-recognizable
 - If they were, then \(A_{TM} \) and \(A_H \) would be decidable

The Chomsky Hierarchy of Languages

<table>
<thead>
<tr>
<th>Language</th>
<th>Regular</th>
<th>Context-Free</th>
<th>Decidable</th>
<th>Turing-Recognizable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computational Models</td>
<td>DFA, NFA, RegExp</td>
<td>PDA, CFG</td>
<td>Deciders – TMs that halt for all inputs</td>
<td>TMs that may loop for strings not in language</td>
</tr>
<tr>
<td>Examples</td>
<td>((0 \cup 1)^*11)</td>
<td>({0^n1^n \mid n \geq 0}), Palindromes</td>
<td>({0^n1^n0^n \mid n \geq 0}), (A_{DFA}), (A_{CFG})</td>
<td>(A_{TM}), (A_H)</td>
</tr>
</tbody>
</table>

(Chomsky also studied context-sensitive languages (CSLs, e.g. \(a^n b^n c^n\)) , a subset of decidable languages recognized by linear-bounded automata (LBA))
The Chomsky Hierarchy – Then & Now…

Then (1950s)

Not T-recognizable

\(\overline{A_{TM}} \)

\(A_{TM} \)

T-recognizable

Decidable

CFLs

\(0^n1^n0^n \)

\(0^n1^n \)

REG

\(0^*1^* \)

U.S. interventionism in the developing world

Political economy of human rights

Propaganda role of corporate media

Now

Final Exam

- Details regarding the Final Exam
 - When: Monday, Dec. 16, 2002 from 8:30-10:20 a.m.
 - Where: This classroom EE1 037.
 - What will it cover?
 - Chapters 0-4 and Chapter 5: pages 171-176.
 - Emphasis will be on material covered after midterm (Chapter 2 and beyond)
 - You may bring 1 page of notes (8 ½” x 11” sheet!)
 - Approximately 6 questions
 - How do I ace it?
 - Practice, practice, practice!
 - See class website for sample final exam and solutions
I believe the Final exam is decidable!

I believe the world’s problems are politically decidable.

I believe my next movie will be unrecognizable.

Stay cool ‘n’ keep pumpin’!