CSE 322: Midterm Review

Basic Concepts (Chapter 0)

Sets

Notation and Definitions
- \(A = \{ x \mid \text{rule about } x \} \), \(x \in A \), \(A \subseteq B \), \(A = B \)
- \(\exists \) (“there exists”), \(\forall \) (“for all”)

Finite and Infinite Sets
- Set of natural numbers \(\mathbb{N} \), integers \(\mathbb{Z} \), reals \(\mathbb{R} \) etc.
- Empty set \(\emptyset \)

Set operations: Know the definitions for proofs
- Union: \(A \cup B = \{ x \mid x \in A \text{ or } x \in B \} \)
- Intersection: \(A \cap B = \{ x \mid x \in A \text{ and } x \in B \} \)
- Complement: \(\overline{A} = \{ x \mid x \notin A \} \)

Set operations (cont.)
- Power set of \(A = \text{Pow}(A) \) or \(2^A = \text{set of all subsets of } A \)
 - E.g. \(A = \{0,1\} \rightarrow 2^A = \{ \emptyset, \{0\}, \{1\}, \{0,1\} \} \)
- Cartesian Product: \(A \times B = \{ (a,b) \mid a \in A \text{ and } b \in B \} \)

Functions:
- \(f: \text{Domain} \rightarrow \text{Range} \)
 - \(\text{Add}(x,y) = x + y \rightarrow \text{Add: } \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z} \)
 - Definitions of 1-1 and onto (bijection if both)
Strings

- Alphabet $\Sigma = \text{finite set of symbols, e.g. } \Sigma = \{0, 1\}$
- String $w = \text{finite sequence of symbols } \in \Sigma$
 - $w = w_1w_2\ldots w_n$
- String properties: Know the definitions
 - Length of $w = |w|$ (if $w = w_1w_2\ldots w_n$)
 - Empty string = ε (length of $\varepsilon = 0$)
 - Substring of w
 - Reverse of $w = w^R = w_n\ldots w_1$
 - Concatenation of strings x and y (append y to x)
 - $y^k = \text{concatenate } y \text{ to itself to get string of } k \text{ } y's$
 - Lexicographical order = order based on length and dictionary order within equal length

Languages and Proof Techniques

- Language $L = \text{set of strings over an alphabet } (\text{i.e. } L \subseteq \Sigma^*)$
 - E.g. $L = \{0^n1^n | n \geq 0\}$ over $\Sigma = \{0, 1\}$
 - E.g. $L = \{p \mid p \text{ is a syntactically correct C++ program}\}$ over $\Sigma = \text{ASCII characters}$
- Proof Techniques: Look at lecture slides, handouts, and notes
 1. Proof by counterexample
 2. Proof by contradiction
 3. Proof of set equalities ($A = B$)
 4. Proof of “iff” ($X \iff Y$) statements (prove both $X \Rightarrow Y$ and $X \Leftarrow Y$)
 5. Proof by construction
 6. Proof by induction
 7. Pigeonhole principle
 8. Dovetailing to prove a set is countably infinite E.g. \mathbb{Z} or $\mathbb{N} \times \mathbb{N}$
 9. Diagonalization to prove a set is uncountable E.g. $2^\mathbb{N}$ or Reals
Languages and Machines (Chapter 1)

- Language = set of strings over an alphabet
 - Empty language = language with no strings = \emptyset
 - Language containing only empty string = $\{\varepsilon\}$

- DFAs
 - Formal definition $M = (Q, \Sigma, \delta, q_0, F)$
 - Set of states Q, alphabet Σ, start state q_0, accept ("final") states F, transition function $\delta: Q \times \Sigma \rightarrow Q$
 - M recognizes language $L(M) = \{w \mid M$ accepts $w\}$
 - In class examples:
 - E.g. DFA for $L(M) = \{w \mid w$ ends in $0\}$
 - E.g. DFA for $L(M) = \{w \mid w$ does not contain $00\}$
 - E.g. DFA for $L(M) = \{w \mid w$ contains an even # of 0’s and an odd number of 1’s$\}$
 - Try: DFA for $L(M) = \{w \mid w$ contains an even # of 0’s and an odd number of 1’s$\}$
Languages and Machines (cont.)

- **Regular Language** = language recognized by a DFA
- **Regular operations**: Union \cup, Concatenation \circ and star *
 - Know the definitions of $A \cup B$, $A \circ B$ and A^*
 - $\Sigma = \{0,1\} \Rightarrow \Sigma^* = \{\varepsilon, 0, 1, 00, 01, \ldots\}$
- **Regular languages are closed under the regular operations**
 - Means: If A and B are regular languages, we can show $A \cup B$, $A \circ B$ and $A^* \text{ (and also } B^*\text{)}$ are regular languages
 - Cartesian product construction for showing $A \cup B$ is regular by simulating DFAs for A and B in parallel
- **Other related operations**: $A \cap B$ and complement \overline{A}
 - Are regular languages closed under these operations?

NFAs, Regular expressions, and GNFAs

- **NFAs vs DFAs**
 - DFA: $\delta(\text{state}, \text{symbol}) = \text{next state}$
 - NFA: $\delta(\text{state}, \text{symbol or } \varepsilon) = \text{set of next states}$
 - Features: Missing outgoing edges for one or more symbols, multiple outgoing edges for same symbol, ε-edges
 - Definition of: NFA N accepts a string $w \in \Sigma^*$
 - Definition of: NFA N recognizes a language $L(N) \subseteq \Sigma^*$
 - E.g. NFA for $L = \{w \mid w = x1a, x \in \Sigma^* \text{ and } a \in \Sigma\}$
- **Regular expressions**: Base cases ε, \emptyset, $a \in \Sigma$, and $R_1 \cup R_2$, $R_1 \circ R_2$ or R_1^*
- **GNFAs** = NFAs with edges labeled by regular expressions
 - Used for converting DFAs to regular expressions
Main Results and Proofs

- **L is a Regular Language iff**
 - L is recognized by a DFA iff
 - L is recognized by an NFA iff
 - L is recognized by a GNFA iff
 - L is described by a Regular Expression

Proofs:
- NFA \(\Rightarrow \) DFA: subset construction (1 DFA state = subset of NFA states)
- Reg Exp \(\Rightarrow \) NFA: combine NFAs for base cases with \(\varepsilon \)-transitions
- DFA \(\Rightarrow \) GNFA \(\Rightarrow \) Reg Exp: Repeat two steps:
 1. Collapse two parallel edges to one edge labeled \((a \cup b)\), and
 2. Replace edges through a state with a loop with one edge labeled \((ab*\varepsilon)\)

Other Results

- Using NFAs to show that Regular Languages are closed under:
 - Regular operations \(\cup, \cdot \) and *
- Are Regular Languages closed under:
 - intersection?
 - complement (Exercise 1.10)?
- Are other operations that regular languages are closed under?
What about the \textit{reversal} operation?

What about the \textit{icannotact} operation?

What about the \textit{subset} operation?

Other Results

- Are Regular Languages closed under:
 - reversal (Problem 1.24)?
 - subset \subseteq?
 - superset \supseteq?
 - no-prefix (Problem 1.32a)?

 no-prefix(A) = \{ $w \in A$ | no proper prefix of w is in A \}
 - no-extend (Problem 1.32b)?

 no-extend(A) = \{ $w \in A$ | w is not a proper prefix of any string in A \}
Pumping Lemma

- **Pumping lemma in plain English (sort of):** If L is regular, then there is a p (= number of states of a DFA accepting L) such that any string s in L of length $\geq p$ can be expressed as $s = xyz$ where y is not null (y is the loop in the DFA), $|xy| \leq p$ (loop occurs within p state transitions), and any “pumped” string xy^iz is in L for all $i \geq 0$ (go through the loop 0 or more times).

- **Pumping lemma in plain Logic:**

 L regular $\Rightarrow \exists p$ s.t. $(\forall s \in L \text{ s.t. } |s| \geq p \ (\exists x, y, z \in \sum^* \text{ s.t. } (s = xyz) \text{ and } (|y| \geq 1) \text{ and } (|xy| \leq p) \text{ and } (\forall i \geq 0, xy^iz \in L)))$

- Is the other direction \Leftarrow also true?

 No! See Problem 1.37 for a counterexample

Proving Non-Regularity using the Pumping Lemma

- **Proof by contradiction to show L is not regular**
 1. Assume L is regular
 2. Let p be some arbitrary number (“pumping length”)
 3. Choose a long enough string $s \in L$ such that $|s| \geq p$
 4. Let x, y, z be strings such that $s = xyz$, $|y| \geq 1$, and $|xy| \leq p$
 5. Pick an $i \geq 0$ such that $xy^iz \not\in L$ (for all x, y, z as in 4)

 This contradicts the pump. lemma. Therefore, L is not regular

- **Examples:** $\{0^n1^n \mid n \geq 0\}$, $\{ww \mid w \in \sum^*\}$, $\{0^n \mid n \text{ is prime}\}$, ADD = $\{x=y+z \mid x, y, z \text{ are binary numbers and } x \text{ is sum of } y \text{ and } z\}$

- **Can sometimes also use closure under \cap (and/or complement)**
 - E.g. If $L \cap B = L_1$, and B is regular while L_1 is not regular, then L is not regular (if L was regular, L_1 would have to be regular)
Some Applications of Regular Languages

- Pattern matching and searching:
 - E.g. In Unix:
 - `ls *.c`
 - `cp /myfriends/games/*.c /mydir/`
 - `grep 'Spock' *trek.txt`

- Compilers:
 - `id ::= letter (letter | digit)*`
 - `int ::= digit digit*`
 - `float ::= d d*.d* (ε|E d d*)`
 - The symbol `|` stands for “or” (= union)

Good luck on the midterm on monday!

- You can bring one 8 1/2” x 11” review sheet
- The questions sheet will have space for answers. I will also bring extra blank sheets for those of you who balk at brevity.

 Don’t sweat it!

 • Go through the homeworks, lecture slides, and examples in the text (Chapters 0 and 1 only)
 • Do the practice midterm on the website and avoid being surprised!