Equivalence of PDAs and CFGs

In the last lecture, we proved the following theorem by starting with a CFG in Greibach Normal Form and constructing an equivalent PDA.

Theorem 1 If \(L \) is a CFL then \(L = S(M) \) for some PDA \(M \).

The converse is also true.

Theorem 2 If \(L = S(M) \) for some PDA \(M \), then \(L = L(G) \) for some CFG \(G \).

Proof Sketch: Let \(M = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F) \).

The idea is to build a grammar \(G = (V, \Sigma, P, S) \) such that \(X \xrightarrow{*} w \) iff on reading string \(w \in \Sigma^* \), \(X \) is popped off the stack in \(M \).

Case 1: \(M \) has one state

Let the state be \(q \). Define the variable set \(V \) of the grammar to be \(\Gamma \). The above condition then translates to:

\[
(q, w, X) \xrightarrow{*} (q, \varepsilon, \varepsilon) \text{ for any } w \in \Sigma^*.
\]

(1)

Therefore, \(V = \Gamma \), \(S = Z_0 \), and \(\Sigma \) is of course the same for \(M \) and \(G \). The set of productions \(P = \{ A \rightarrow a \alpha \mid (q, \alpha) \in \delta(q, a, A) \} \), for all \(a \in \Sigma \cup \{ \varepsilon \} \), \(\alpha \in \Gamma^* \) and \(A \in \Gamma \). Note that \(G \) is not in GNF, to allow for \(\varepsilon \)-moves in the PDA.

Case 2: \(M \) has multiple states

Define the set of variables of \(G \) to be \(V = \{ (pXq) \mid p, q \in Q, X \in \Gamma \} \), the goal being to satisfy the following condition:

\[
(pXq) \xrightarrow{*} w \text{ iff } (p, w, X) \xrightarrow{*} (q, \varepsilon, \varepsilon) \text{ for any } w \in \Sigma^*.
\]

(2)

So what should the start symbol \(S \) of \(G \) be? With the above goal in mind, we would need the start symbol to be \((q_0Z_0q) \), for each \(q \in Q \). Instead we pick a new variable \(S \) (not in \(V \)) and add the following productions to the production set \(P \): \(S \rightarrow (q_0Z_0q) \), for all \(q \in Q \). Thus the variable set of \(G \) is \(V \cup \{ S \} \).

Now we need to consider each transition in the \(\delta \) function to complete the set of production rules \(P \).
We add productions to P as indicated below, for $p, q \in Q$, $a \in \Sigma \cup \{ \varepsilon \}$, $X \in \Gamma$. For each case, keep in mind the above condition (2) that we want to satisfy.

- If $(q, \varepsilon) \in \delta(p, a, X)$, then add the production $\langle pXq \rangle \rightarrow a$.
- If $(q, \gamma) \in \delta(p, a, X)$, then add the productions $\langle pXr \rangle \rightarrow a \langle q\gamma r \rangle$, for all $r \in Q$.
- If $(q, \gamma_1\gamma_2) \in \delta(p, a, X)$, then add the productions $\langle pXr \rangle \rightarrow a \langle q\gamma_1\gamma_2 r \rangle$, for all $r, s \in Q$.
-
- If $(q, \gamma_1\gamma_2\ldots\gamma_m) \in \delta(p, a, X)$, then add the productions $\langle pXr \rangle \rightarrow a \langle q\gamma_1\gamma_2\ldots\gamma_m r \rangle$, for all $s_1, s_2, \ldots, s_m \in Q$.

To solidify your understanding of the above construction, do the following exercise:

Give a grammar for the language $S(M)$ where $M = (\{q_0, q_1\}, \{0, 1\}, \{Z_0, X\}, \delta, q_0, Z_0, \emptyset)$ and δ is given by:

\[
\begin{align*}
\delta(q_0, 1, Z_0) & = \{(q_0, XZ_0)\} \\
\delta(q_0, 1, X) & = \{(q_0, XX)\} \\
\delta(q_0, 0, X) & = \{(q_1, X)\} \\
\delta(q_0, \varepsilon, Z_0) & = \{(q_0, \varepsilon)\} \\
\delta(q_1, 1, X) & = \{(q_1, \varepsilon)\} \\
\delta(q_1, 0, Z_0) & = \{(q_0, Z_0)\}
\end{align*}
\]