The Pumping Lemma for Regular Languages

✦ What is it?
 ✗ A statement ("lemma") that is true for all regular languages

✦ Why is it useful?
 ✗ Can be used to show that certain languages are not regular
 ✗ How? By contradiction: Assume the given language is regular and show that it does not satisfy the pumping lemma

✦ What is the idea behind it?
 ✗ Any regular language \(L \) has a DFA \(M \) that recognizes it
 ✗ If \(M \) has \(p \) states and accepts a string of length \(\geq p \), the sequence of states \(M \) goes through must contain a cycle (repetition of a state) due to the pigeonhole principle! Thus:
 ✗ All strings that make \(M \) go through this cycle 0 or any number of times are also accepted by \(M \) and should be in \(L \).

Formal Statement of the Pumping Lemma

✦ Pumping Lemma: If \(L \) is a regular language, then there exists a number \(p \) (the "pumping length") such that for all strings \(s \) in \(L \) such that \(|s| \geq p \), there exist \(x, y, \) and \(z \) such that \(s = xyz \) and:
 1. \(xy^iz \in L \) for all \(i \geq 0 \), and
 2. \(|y| \geq 1 \), and
 3. \(|xy| \leq p \).

✦ More Plainly: \(p = \) number of states of a DFA accepting \(L \). Any string \(s \) in \(L \) of length \(\geq p \) can be expressed as \(s = xyz \) where \(y \) is not null (\(y \) is the cycle), \(|xy| \leq p \) (cycle occurs within \(p \) state transitions), and any "pumped up" string \(xy^iz \) is in \(L \) for all \(i \geq 0 \) (go through the cycle 0 or more times).

✦ Proved in 1961 by Bar-Hillel, Peries and Shamir.
The Pumping Lemma

✦ Proof on the board…(see page 79 in textbook)
 ➔ See how it applies to \(\{w \mid \text{number of 0's in } w \text{ is not divisible by 3} \} \)

✦ In-Class Examples: Using the pumping lemma to show a language \(L \) is not regular
 ➔ 5 steps for a proof by contradiction:
 1. Assume \(L \) is regular.
 2. Let \(p \) be the pumping length given by the pumping lemma.
 3. Choose cleverly an \(s \) in \(L \) of length at least \(p \), such that
 4. For any way of decomposing \(s \) into \(xyz \), where \(|xy| \leq p \) and \(y \) isn't null,
 5. We can choose an \(i \geq 0 \) such that \(xy^iz \) is not in \(L \).

Proving non-regularity as a Two-Person game

✦ An alternate view of using the pumping lemma to show a language \(L \) is not regular
 ➔ Think of it as a game between you and an opponent:
 1. You: Assume \(L \) is regular
 2. Opponent: Chooses some value \(p \)
 3. You: Choose cleverly an \(s \) in \(L \) of length \(\geq p \)
 4. Opponent: Breaks \(s \) down into some \(xyz \), where \(|xy| \leq p \) and \(y \) is not null,
 5. You: Need to choose an \(i \geq 0 \) such that \(xy^iz \) is not in \(L \) (in order to win (the prize of non-regularity)!).

✦ See how this works for showing \(\{0^n1^n \mid n \geq 0\} \) is not regular.
The Pumping Lemma Song (by Harry Mairson)

Any regular language \(L \) has a magic number \(p \)
And any long-enough word \(s \) in \(L \) has the following property:
Amongst its first \(p \) symbols is a segment you can find
Whose repetition or omission leaves \(s \) amongst its kind.

So if you find a language \(L \) which fails this acid test,
And some long word you pump becomes distinct from all the rest,
By contradiction you have shown that language \(L \) is not
A regular guy, resilient to the damage you have wrought.

But if, upon the other hand, \(s \) stays within its \(L \),
Then either \(L \) is regular, or else you chose not well.
For \(s \) is \(xyz \), and \(y \) cannot be null,
And \(y \) must come before \(p \) symbols have been read in full.

R. Rao, CSE 322 Source: http://www.cs.brandeis.edu/~mairson/poems/node1.html