CSE 322: Midterm Review

✦ Basic Concepts (Chapter 0)
 ➤ Sets
 ◦ Notation and Definitions
 • $A = \{x \mid \text{rule about } x\}, x \in A, A \subseteq B, A = B$
 • \exists (“there exists”), \forall (“for all”)
 ◦ Finite and Infinite Sets
 • Set of natural numbers N, integers Z, reals R etc.
 • Empty set \emptyset
 ◦ Set operations: Know the definitions for proofs
 • Union: $A \cup B = \{x \mid x \in A \lor x \in B\}$
 • Intersection $A \cap B = \{x \mid x \in A \land x \in B\}$
 • Complement $\overline{A} = \{x \mid x \notin A\}$

Basic Concepts (cont.)

✦ Set operations (cont.)
 ➤ Power set of $A = \text{Pow}(A)$ or $2^A = \text{set of all subsets of } A$
 ◦ E.g. $A = \{0,1\} \Rightarrow 2^A = \{\emptyset, \{0\}, \{1\}, \{0,1\}\}$
 ➤ Cartesian Product $A \times B = \{(a,b) \mid a \in A \land b \in B\}$

✦ Functions:
 ➤ f: Domain \rightarrow Range
 ◦ $\text{Add}(x,y) = x + y \Rightarrow \text{Add}: Z \times Z \rightarrow Z$
 ◦ Definitions of 1-1 and onto (bijection if both)
Strings

✦ Alphabet $\Sigma = \text{finite set of symbols, e.g. } \Sigma = \{0, 1\}$

✦ String $w = \text{finite sequence of symbols } \in \Sigma$
 $w = w_1w_2\ldots w_n$

✦ String properties: Know the definitions
 \Rightarrow Length of $w = |w|$ (if $w = w_1w_2\ldots w_n$)
 \Rightarrow Empty string $= \varepsilon$ (length of $\varepsilon = 0$)
 \Rightarrow Substring of w
 \Rightarrow Reverse of $w = w^R = w_nw_{n-1}\ldots w_1$
 \Rightarrow Concatenation of strings x and y (append y to x)
 $\Rightarrow y^k = \text{concatenate } y \text{ to itself to get string of } k \text{ } y\text{'s}
 \Rightarrow$ Lexicographical order $= \text{order based on length and dictionary order within equal length}$

Languages and Proof Techniques

✦ Language $L = \text{set of strings over an alphabet } (\text{i.e. } L \subseteq \Sigma^*)$
 \Rightarrow E.g. $L = \{0^n1^n \mid n \geq 0\} \text{ over } \Sigma = \{0, 1\}$
 \Rightarrow E.g. $L = \{p \mid p \text{ is a syntactically correct C++ program}\}$ over $\Sigma = \text{ASCII characters}$

✦ Proof Techniques: Look at lecture slides, handouts, and notes
 \Rightarrow Proof by counterexample
 \Rightarrow Proof by contradiction
 \Rightarrow Proof of set equalities (A = B)
 \Rightarrow Proof of “iff” (X\iffY) statements (prove both X\RightarrowY and X\LeftarrowY)
 \Rightarrow Proof by construction
 \Rightarrow Proof by induction
 \Rightarrow Pigeonhole principle
 \Rightarrow Dovetailing to prove a set is countably infinite (E.g. Z or N \times N)
 \Rightarrow Diagonalization to prove a set is uncountable (E.g. 2^N or Reals)
Languages and Machines (Chapter 1)

Language = set of strings over an alphabet
- Empty language = language with no strings = ∅
- Language containing only empty string = {ε}

DFAs
- Formal definition M = (Q, ∑, q0, δ, F)
- Set of states Q, alphabet ∑, start state q0, accept (“final”) states F, transition function δ: Q × ∑ → Q
- M recognizes language L(M) = {w | M accepts w}
- In class examples:
 - E.g. DFA for L(M) = {w | w ends in 0}
 - E.g. DFA for L(M) = {w | w does not contain 00}
 - E.g. DFA for L(M) = {w | w contains an even # of 0’s}

Try: DFA for L(M) = {w | w contains an even # of 0’s and an odd number of 1’s}

Languages and Machines (cont.)

Regular Language = language recognized by a DFA

Regular operations: Union ∪, Concatenation ° and star *
- Know the definitions of A ∪ B, A.B and A*
- ∑ = {0,1} → ∑* = {ε, 0, 1, 00, 01, …}

Regular languages are closed under the regular operations
- Means: If A and B are regular languages, we can show A ∪ B, A°B and A* (and also B*) are regular languages
- Cartesian product construction for showing A ∪ B is regular by simulating DFAs for A and B in parallel

Other related operations: A ∩ B and complement A̅
- Are regular languages closed under these operations?
NFAs, Regular expressions, and GNFAs

- **NFAs vs DFAs**
 - DFA: $\delta(\text{state}, \text{symbol}) = \text{next state}$
 - NFA: $\delta(\text{state}, \text{symbol or } \epsilon) = \text{set of next states}$
 - Features: Missing outgoing edges for one or more symbols, multiple outgoing edges for same symbol, ϵ-edges
 - Definition of: NFA N accepts a string $w \in \Sigma^*$
 - Definition of: NFA N recognizes a language $L(N) \subseteq \Sigma^*$
 - E.g. NFA for $L = \{w \mid w = x_1a, x \in \Sigma^* \text{ and } a \in \Sigma\}$

- **Regular expressions**: Base cases ϵ, \emptyset, $a \in \Sigma$, and $R_1 \cup R_2$, $R_1^*R_2$ or R_1^*

- **GNFAs = NFAs with edges labeled by regular expressions**
 - Used for converting DFAs to regular expressions

Main Results and Proofs

- **L is a Regular Language iff**
 - L is recognized by a DFA iff
 - L is recognized by an NFA iff
 - L is recognized by a GNFA iff
 - L is described by a Regular Expression

- **Proofs:**
 - NFA\rightarrowDFA: subset construction (1 DFA state=subset of NFA states)
 - Reg Exp\rightarrowNFA: combine NFAs for base cases with ϵ-transitions
 - DFA\rightarrowGNFA\rightarrowReg Exp: Collapse two parallel edges to one edge ($a \cup b$) and replace edges through a state with a loop with one edge (ab^*c)
Other Results

✦ Using NFAs to show that Regular Languages are closed under:
 ➤ Regular operations \cup, \circ and $*$

✦ Are Regular Languages closed under:
 ➤ intersection?
 ➤ complement (Exercise 1.10)?
 ➤ reversal (Problem 1.24)?
 ➤ subset \subseteq?
 ➤ superset \supseteq?
 ➤ no-prefix?
 ➤ no-extend?

Pumping Lemma

✦ *Pumping lemma in plain English (sort of)*: If L is regular, then there is a p (= number of states of a DFA accepting L) such that any string s in L of length $\geq p$ can be expressed as $s = xyz$ where y is not null (y is the loop in the DFA), $|xy| \leq p$ (loop occurs within p state transitions), and any “pumped” string xy^iz is in L for all $i \geq 0$ (go through the loop 0 or more times).

✦ *Pumping lemma in plain Logic:*

L regular $\Rightarrow \exists p \text{ s.t. } (\forall s \in L \text{ s.t. } |s| \geq p \ (\exists x, y, z \in \Sigma^* \text{ s.t. } (s = xyz) \text{ and } (|y| \geq 1) \text{ and } (|xy| \leq p) \text{ and } (\forall i \geq 0, xy^iz \in L)))$
Proving Non-Regularity using the Pumping Lemma

- Proof by contradiction to show L is not regular
 1. Assume L is regular
 2. Let p be some number (“pumping length”)
 3. Choose a long enough string $s \in L$ such that $|s| \geq p$
 4. Let x,y,z be strings such that $s = xyz$, $|y| \geq 1$, and $|xy| \leq p$
 5. Pick an $i \geq 0$ such that $xy^iz \not\in L$ (for all x,y,z as in 4)
 This contradicts the pump. lemma. Therefore, L is not regular

- Typical Examples: $\{0^n1^n|n \geq 0\}$, $\{ww| w \in \sum^*\}$, $\{ww^R| w \in \sum^*\}$, $\{0^n|n \text{ is prime}\}$

- Can sometimes also use closure under \cap (and/or complement)
 - E.g. If $L \cap B = L_1$, and B is regular while L_1 is not regular, then L is not regular (if L was regular, L_1 would have to be regular)

Some Applications of Regular Languages

- Pattern matching and searching:
 - E.g. In Unix:
 - `ls *.c`
 - `cp /myfriends/games/.* /mydir/`
 - `grep ‘Spock’ *trek.txt`

- Compilers:
 - `id ::= letter (letter | digit)*`
 - `int ::= digit digit*`
 - `float ::= d d*.d* (\varepsilon | \varepsilon d d*)`
 - The symbol | stands for “or” (= union)