1. Circle True or False below. Very briefly justify your answers, e.g. by giving a counter example, by citing a theorem we’ve proved, briefly sketching a construction, etc. Assume \(A \) and \(R \) are subsets of \(\Sigma^* \) for some fixed alphabet \(\Sigma \).

 (a) If \(R \) is regular, and \(A \subseteq R \), then \(A \) is regular. T F

 (b) If \(R \) is regular, and \(R \subseteq A \), then \(A \) is regular. T F

 (c) If \(R \) is regular, and \(A \cap R \) is regular, then \(A \) is regular. T F

 (d) If \(R \) is regular, but \(A \cap R \) is non-regular, then \(A \) is non-regular. T F

 (e) If \(R \) is regular, then \(R^* \) is regular. .. T F
2. Give a deterministic finite automaton recognizing the language $L = \{x \in \{a, b\}^* \mid x \text{ contains an even number of } a\text{'s and an odd number of } b\text{'s}\}$. E.g., b and $aaaba$ are in L, but $abab$ and $baaa$ are not. You do not need to give a correctness proof for your machine.

3. Consider the NFA $M = (Q, \Sigma, \delta, q_0, F)$ with the following transition diagram:

(a) In what states might the NFA be after reading input $bbba$?
(b) Does the NFA accept $bbba$? Why or why not?
(c) Suppose you apply the “subset” construction to build an equivalent DFA $M' = (Q', \Sigma, \delta', q'_0, F')$. What state $q \in Q'$ would M' be in after reading the input $bbba$?
(d) Is q above in F'? Why or why not?
(e) In terms of the states of M, what is the start state of M'? $q'_0 = $
(f) What state is $\delta'(\{2, 4\}, a)$? $\delta'(\{2, 6\}, a)$? $\delta'(\{5\}, a)$?
(g) Describe in English the language accepted by M. (Say what it is, not how M operates.)
4. Using the construction given in the text and lecture for converting an FA to a regular expression, eliminate state number 2 (and only state 2) from the following GNFA. The special start- and final-states have already been added. Arrows labeled \emptyset are not shown. You may also omit them from your answer if you prefer, and you may simplify terms involving \emptyset (e.g., $x \cup y \cdot \emptyset \equiv x$), but do not otherwise simplify the expressions.

5. Let $L = \{x \in \{a, b\}^* \mid x$ contains more a’s than b’s $\}$. Prove (using any method you wish) that L is not a regular language.