CSE 322: Regular Expressions and Finite Automata

✦ Last Time: Definition of a Regular Expression
 ✓ R is a regular expression iff R is a string over \(\Sigma \cup \{ \varepsilon, \emptyset, (,), \cup, * \} \) and R is:
 1. Some symbol \(a \in \Sigma \), or
 2. \(\varepsilon \), or
 3. \(\emptyset \), or
 4. (R1 \(\cup \) R2) where R1 and R2 are regular exps., or
 5. R1\(^* \) where R1 is a regular expression.

✦ Precedence: Evaluate * first, then \(\cup \), then *
 ✓ E.g. 0 \(\cup \) 1\(^* \) = 0 \(\cup \) (1\(^* \) (1*)) = \{0\} \(\cup \) \{1, 11, 111, … \}

Examples

✦ What is R for each of the following languages?
 1. \(L(R) = \{ w \mid w \text{ contains exactly two 0's} \} \)
 2. \(L(R) = \{ w \mid w \text{ contains at least two 0's} \} \)
 3. \(L(R) = \{ w \mid w \text{ contains an even number of 0's} \} \)
 4. \(L(R) = \{ w \mid w \text{ does not contain 00} \} \)
 5. \(L(R) = \{ w \mid w \text{ is a valid identifier in C} \} \)

Regular Expressions and Finite Automata

✦ What is the relationship between regular expressions and DFAs/NFAs?
✦ Specifically:
 1. Given a reg. exp. R, can we create an NFA N such that \(L(R) = L(N) \)?
 2. Given an NFA N (or its equivalent DFA M), can we come up with a reg. exp. R such that \(L(M) = L(R) \)?

I think so... do you??
From Regular Expressions to NFAs

✦ Problem: Given any regular expression \(R \), how do we construct an NFA \(N \) such that \(L(N) = L(R) \)?

✦ Soln.: Use the multi-part definition of regular expressions!!

From NFAs/DFAs to Regular Expressions

✦ Problem: Given any NFA \(N \), how do we construct a regular expression \(R \) such that \(L(N) = L(R) \)?

✦ Solution: First, convert NFA \(N \) to an equivalent DFA \(M \) to keep things simple. Then:

 ➤ Idea: Collapse 2 or more edges in \(M \) labeled with single symbols to a new edge labeled with an equivalent regular expression

 ➤ This results in a “generalized” NFA (GNFA)

 ➤ Our goal: Get a GNFA with 2 states (start and accept) connected by a single edge labeled with the required regular expression \(R \)

Next Class: How to pump up them strings…

✦ Next time: Beyond the regular world…

 ➤ Pumping Lemma for showing non-regularity of languages

✦ Things to do over the weekend:

 ➤ Finish reading Chapter 1
 ➤ Start (and finish?) homework #3
 ➤ Watch a Kevin Bacon movie (optional)
 ➤ Have a great weekend!