CSE 322 Lecture 3: Review of Proof Techniques

✦ Last Time:
 ✴ Proof by counterexample: Give an example that disproves the given statement
 ✴ Proof by contradiction: Assume statement is false and show that it leads to a contradiction
 ✴ Proof of set equality $A = B$: Show $A \subseteq B$ and $B \subseteq A$

✦ Today (and beyond):
 ✴ Proof of “X iff Y” statements
 ✴ Proof by construction
 ✴ Proof by induction
 ✴ “Bird-based” techniques: Pigeonhole principle and Dovetailing
 ✴ CS Theoretician’s favorite: Diagonalization

Proof Techniques II: The Big picture

✦ Proving “X iff Y” statements: Prove $X \Rightarrow Y$ (“X only if Y”) and $Y \Rightarrow X$ (“X if Y”)
 ✴ Example: For all real numbers x, show $\lfloor x \rfloor = \lceil x \rceil \iff x \in \mathbb{Z}$

✦ Proof by construction: Show that a statement can be satisfied by constructing an object using what is given
 ✴ Example: Show that for all c, there exists n_0 such that $n^2 > c$ for all $n \geq n_0$

✦ Proof by induction (very common in CS Theory): 2 steps –
 1. Basis Step: Show statement is true for some finite value n_0,
 typically $n_0 = 0$
 2. Induction hypothesis and induction step: Assume statement is true for some fixed but arbitrary $n \geq n_0$. Show it is also true for $n + 1$
 ✴ Example: Show that for all $n \geq 0$, $1 + 2 + \ldots + n = n(n+1)/2$

The “Avian” Techniques

✦ Pigeonhole principle: If A and B are finite sets and $|A| > |B|$, then there is no one-to-one function from A to B
 ✴ $f: A \rightarrow B$ is one-to-one if for any distinct $x, y \in A$, $f(x) \neq f(y)$
 ✴ Idea: “more pigeons than pigeonholes” ⇒ at least one pigeonhole contains two pigeons. Prove by induction on $|B|$
 ✴ E.g. In a room of 13 or more people, at least 2 have the same birthmonth

✦ Dovetailing: Useful for showing union of any finite or countably infinite collection of countably infinite sets is again countably infinite
 ✴ A is countably infinite if there is a 1-1 correspondence (“bijection”) between N (the set of natural numbers) and A
 ✴ E.g. Use dovetailing to show \mathbb{Z} and $\mathbb{N} \times \mathbb{N}$ are both countably infinite

Next Class: Enter the finite automaton…

✦ Next time:
 ✴ Infinite sets that are not countably infinite (diagonalization)
 ✴ Finite automata 101

✦ Things to do over the weekend:
 ✴ Browse course website
 ✴ Sign up for mailing list (instructions on website)
 ✴ Finish Chapter 0 and start Chapter 1
 ✴ Start (and finish?) homework #1
 ✴ Have a great weekend!