Construction of Regular expressions from Finite Automata

The key idea is to consider generalized NFA’s that allow edge labels that are regular expressions. The intuition is that in following an edge labelled by regular expression $\alpha$, some prefix of the input remaining to be read is in $L(\alpha)$ and following the edge means reading such a prefix. A string $x$ will be accepted if and only if there is some path from the start state to a final state whose labels concatenated together form a regular expression whose associated language contains $x$. Notice that our standard NFA’s and DFA’s are special cases of this where all our regular expressions turn out be either single characters or $\epsilon$.

For the construction we first add a new start state and a new final state connected to (resp. from) the old ones via $\epsilon$-moves. (This is so that no start or final state is on a cycle.) There are only two rules which we apply until the graph is reduced to a single labelled edge which will have the regular expression on it.

**Rule 1.** Combination of Parallel Edges: If $q_1$ and $q_2$ are any two states (possibly $q_1 = q_2$) then replace

$$
\begin{array}{c}
q_1 \quad r \\
\quad s \\
q_2
\end{array}
$$

by

$$
\begin{array}{c}
q_1 \\
\quad r \cup s \\
q_2
\end{array}
$$

**Rule 2.** Removal of States: If $q_3$ is not either the new start state or the new final state then for every pair of states $q_1$ and $q_2$ (again possibly $q_1 = q_2$) replace

$$
\begin{array}{c}
q_1 \\
\quad r \\
q_3 \\
\quad s \\
q_2
\end{array}
$$

by

$$
\begin{array}{c}
q_1 \\
\quad r \circ s^*t \\
q_2
\end{array}
$$

Turn page over for an example.
Rule 2 to $q_f$

Rule 1 to edges

Rule 2 to $q_2$

Rule 1 to edges

Rule 2 to $q_0$

[00U(1U01)(01)*U(1U00)]*[OU(1U01)(01)*U(eU0)]