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Sums
∑
i=1,n

f(i) = f(1) + f(2) + . . . + f(n)

Sometimes we want to start at 0:

∑
i=0,n

f(i) = f(0) + f(1) + f(2) + . . . + f(n)

Telescoping
Find a function g such that f(x) = g(x)− g(x− 1) then write:

f(1) + f(2) + . . . + f(n) = (g(1)− g(0)) + (g(2)− g(1)) + . . . (g(n)− g(n− 1))

= g(n)− g(0)

For example, we use: 1
x(x+1)

= 1
x
− 1

x+1
to compute:

1

1 · 2
+

1

2 · 3
+ . . . +

1

n · (n + 1)
= (

1

1
− 1

2
) + (

1

2
− 1

3
) + . . . (

1

n
− 1

n + 1
)

= 1− 1

n + 1
=

n

n + 1
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Rule of Thumb: There are only three ways to compute a sum exactly: (1)
telescoping, or (2) someone tells you what the sum is, and you prove it by induc-
tion (and this is, ultimately, the same as (1)), or (3) you derive it from another
sum, which you computed using (1) or (2).

Approximating Sums with Integrals
Sometimes we don’t need to compute the sum exactly, but we want to approximate
it: then we use integrals. Suppose f(x) is strictly increasing, then:

∫ i

i−1

f(x)dx < f(i) <

∫ i+1

i

f(x)dx.

(Draw a graph to convince yourself why this is the case.) Hence:∫ n

0

f(x)dx < f(1) + f(2) + . . . + f(n) <

∫ n+1

1

f(x)dx

For example, we want to approximate the sum:

√
1 +
√

2 + · · ·+
√

n

Here f(x) =
√

x, which is strictly increasing. Since
∫ √

xdx = 2·x3/2

3
we have

2 ·
√

n3

3
<
√

1 +
√

2 + · · ·+
√

n <
2 ·
√

(n + 1)3

3
− 2

3

Suppose f is strictly decreasing: then replace < with > in all inequalities
aboved.

For example, we want to approximate the sum:

1

1
+

1

2
+

1

3
+ · · ·+ 1

n

Here f(x) = 1
x
, which is strictly decreasing. Since

∫
dx
x

= ln(x), we have:

1 + (

∫ n

1

dx

x
) = 1 + ln(n) >

1

1
+

1

2
+

1

3
+ · · ·+ 1

n
>

∫ n+1

1

dx

x
= ln(n + 1)
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What happened on the left ? We couldn’t compute
∫ n

0
f(x)dx, because ln(0)

is undefined. Instead we wrote
∑

i=1,n 1/i as 1 +
∑

i=2,n 1/i; the upper bound for
this is 1 +

∫ n

1
f(x)dx.

The integral method is very powerful. The textbook shows a weaker bound
for the harmonic series: Hn =

∑
i=1,n 1/i > 1 + log2(n)/2. The lower bound

ln(n + 1) that we obtained here is better.
Rule of thum If you don’t need to compute the sum exactly, but only to ap-

proximate it, then the integral method is the quickest method, and the best method.
There is only one reason to use another method than the integral: when you can’t
compute

∫
f(x)dx. On the other hand, we can’t use integrals when we need to

compute the sum exactly.

Sums of Polynomials
Compute these sums exactly:

1 + 2 + 3 + . . . + n

12 + 22 + 32 + . . . + n2

13 + 23 + 33 + . . . + n3

. . .

1k + 2k + 3k + . . . + nk

More generally, let P (x) be a polynomial in x. Compute this sum exactly:

P (1) + P (2) + . . . + P (n)

Consider the following special polynomial:

(x)k = x · (x− 1) · (x− 2) · · · (x− k + 1)

The sum of (x)k is:

Sk(n) = (1)k + (2)k + (3)k + . . . + (n)k

= 1 · 2 · · · k + 2 · 2 · · · (k + 1) + . . . + (n− k + 1) · · ·n
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We compute Sk(n) using telescoping:

(x + 1)k+1 − (x)k+1 = (x + 1) · x · (x− 1) · (x− 2) · · · (x− k + 1)−
−x · (x− 1) · (x− 2) · · · (x− k)

= [(x + 1)− (x− k)]x · (x− 1) · (x− 2) · · · (x− k + 1)

= (k + 1) · (x)k

The sum becomes:

Sk(n) = (1)k + (2)k + (3)k + . . . + (n)k

=
1

k + 1
[(2)k+1 − (1)k+1 + (3)k+1 − (2)k+1 + . . . (n + 1)k+1 − (n)k+1]

=
(n + 1)k+1

k + 1

So we have computed
∑

i=1,n(i)k. Let’s go back to computing
∑

i=1,n ik. For
that we express xk as a linear combination of (x)1, (x)2, . . . , (x)k. The principled
way to do this is through Stirling numbers of the second kind, but if this sounds
scary, here is a simpler way. Expand (x)1, (x)2, (x)3, . . .:

(x)1 = x

(x)2 = x(x− 1) = x2 − x

(x)3 = x(x− 1)(x− 2) = x3 − 3x2 + 2x

(x)4 = x(x− =)(x− 2)(x− 3) = . . .

. . .

“Solve” for x, x2, x3, . . .:

x = (x)1

x2 = (x)2 + (x)1

x3 = (x)3 − 3(x)2 − (x)1

x4 = (x)4 + . . .

. . .
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Now we can compute any sum
∑

i=1,n ik. For example, take
∑

i=1,n i3:

13 + 23 + . . . + n3 =
∑

i3 =
∑

(i)3 − 3
∑

(i)2 −
∑

(i)1

=
(n + 1)4

4
− 3

(n + 1)3

3
− (n + 1)2

2

=
(n + 1)n(n− 1)(n− 2)

4
− 3

(n + 1)n(n− 1)

3
− (n + 1)n

2

=
n(n + 1)

4
((n− 1)(n− 2)− 4(n− 1)− 2)

=
n(n + 1)

4

(
n2 − 3n + 2− 4n + 4− 2

)
=

n2(n + 1)2

4

We can compute now
∑

P (i) for any polynomial P (x). For example: “what
is the sum of the first n odd numbers” ?

1 + 3 + 5 + . . . + (2n− 1) =
∑
i=1,n

(2i− 1)

= 2
∑
i=1,n

i−
∑
i=1,n

1 = 2
n(n + 1)

2
− n = n2

Answer: “the sum of the first n odd numbers is n2”.
Rule of Thumb: To compute sums of any polynomial, first memorize the

three standard sums: ∑
i=1,n

i =
n(n + 1)

2∑
i=1,n

i2 =
n(n + 1)(2n + 1)

6∑
i=1,n

i3 =

(
n(n + 1)

2

)2

If you have to go beyond k = 3, then you’ll need to derive it from
∑

i(i)k.
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Power Sums
Prove the following identity by induction on n:

1 + x + x2 + . . . + xn =
xn+1 − 1

x− 1
(1)

When |x| < 1, then limn→∞ xn+1 = 0. Hence, we obtain the infinite series:

1 + x + x2 + . . . + xn + . . . =
1

1− x
when |x| < 1 (2)

Alice has a pizza. On the first day she eats half of the pizza; on the second day
she eats half of what is left; on the third day she eats half of what is left, and so
on. On each day she eats half of what is left. In how many days will she finish the
pizza ?

Answer: never ! This is because on day n she eats 1/2n of the pizza, hence,
given an infinite amount of time she will eat:

1

2
+

1

22
+

1

23
+ . . . +

1

2n
+ . . . =

1

2

(
1 +

1

2
+

1

22
+ . . . +

1

2n−1
+ . . .

)
=

1

2

1

1− 1
2

= 1

Bob watched Alice eating her pizza and tried to eat even more: on day n, Bob
eats n-times the amount of pizza that Alice ate that day. Thus, on day 1 Bob
ate the same amount as Alice (1/2 a pizza); on day 2 he ate twice what Alice ate
(2∗1/22 of a pizza); on day 3 he ate three times Alice’s portion (3∗1/23), etc. How
much more pizza does Bob eat than Alice ? Here’s what Bob eats:

1

2
+

2

22
+

3

23
+ . . . +

n

2n
+ . . . =

1

2

(
1 +

2

2
+

3

22
+ . . . +

n

2n−1
+ . . .

)
To compute this sum we start from the identity (2) and derivate both sides with

respect to x. This gives us the following identity:

1 + 2x + 3x2 + . . . + nxn−1 + . . . =
1

(1− x)2
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This is an important sum: remember how we obtained it even if you forget the
end result. Now we can figure out how many pizzas Bob eats:

1

2

(
1 +

2

2
+

3

22
+ . . . +

n

2n−1
+ . . .

)
=

1

2

1

(1− 1
2
)2

= 2

Thus, given an infinite amount of time, Alice eats one pizza and Bob eats two
pizzas.

Rule of Thumb You should be able to compute any variation on the geometric
series Eq.(1) by applying the derivative.

Recurrences

Sums in Disguise
Don’t be fooled by these:

f0 = 0

fn = fn−1 + 3n

This is not really a recurrence, but a sum:

fn = 3 + 3 · 2 + 3 · 2 + . . . + 3 · n = 3
n(n + 1)

2

Fibonacci
The Fibonacci sequence is a real recurrence:

f0 = 1

f1 = 1

fn = fn−1 + fn−2

We want to compute a closed formula for fn. Here we’ll just make a wild
guess. We will guess that fn = an, for some constant a. What is the constant a ?
Substitute in fn = fn−1 + fn−2 and we obtain:
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an = an−1 + an−2

a2 = a + 1

a2 − a− 1 = 0

The last equation is called the characteristic equation of the recurrence. Its
roots are a1,2 = 1±

√
5

2
. Thus, have two choices for a; plus, we can always multiply

an with some constant. It follows that the general expression for fn is:

fn = c1 · an
1 + c2 · an

2 (3)

Exercise: prove that, if a1, a2 are the roots of the equation x2 − x − 1 = 0
and c1, c2 are any two constants, then fn given by the expression (3) satisfies the
recurrence: fn = fn−1 + fn−2 forall n ≥ 2.

We already know a1, a2, but how do we compute c1, c2 ? Simply by knowing
f0 and f1:

f0 = 1 = c1a
0
1 + c2a

0
2 = c1 + c2

f1 = 1 = c1a
1
1 + c2a

1
2 = c1a1 + c2a2

We solve for c1, c2:

c1 =
a2 − 1

a2 − a1

=

√
5− 1

2
√

5

c2 =
a1 − 1

a2 − a1

=
−
√

5− 1

2
√

5

We can write these two constants more elegantly, by noticing:

1

a1

=
1

1 +
√

5
= −1−

√
5

2

1

a2

=
1

1−
√

5
= −1 +

√
5

2
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thus;

c1 = − 1

a1

√
5

c2 =
1

a2

√
5

Putting everything together we obtain:

fn =
1√
5

(
an−1

2 − an−1
1

)
Other Recurrences
Other recurrences “like the Fibonacci series” are solved similarly.

f0 = 6

f1 = 10

f2 = 20

fn = 6fn−1 − 11fn−2 + 6fn−3

We proceed in the same way. We make a wild guess that fn = an, and search
for the constant a that satifies the recurrence fn = 6fn−1 − 11fn−2 + 6fn−3:

an = 6an−1 − 11an−2 + 6an−3

a3 = 6a2 − 11a + 6

a3 − 6a2 + 11a− 6 = 0

Here we have three roots: a1 = 1, a2 = 2 and a3 = 3, and therefore the
general expression for fn is:

fn = c11
n + c22

n + c33
n
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To find the three constants c1, c2, c3 we build a system of equations by using
the initial conditions f0, f1, f2:

f0 = 6 = c1 + c2 + c3

f2 = 10 = c1 + 2c2 + 3c3

f3 = 20 = c1 + 4c2 + 9c3

The solutions are: c1 = 3, c2 = 2, c3 = 1, and therefore, fn is given by:

fn = 3 + 2n+1 + 3n

Roots with Multiplicity > 1

If the characteristic equation has a root with multiplicity > 1, then we need to do
this. Consider:

f0 = 2

f1 = 7

fn = 6fn−1 − 9fn−2

Trying fn = an, we are lead to the characteristic equation a2 − 6a + 9 = 0,
which has a single root, with multiplicity 2: a1 = a2 = 3. We cannot apply
blindly the method above, because we don’t have two constants c1, c2 to satisfy
the two initial conditions f0, f1: the system c1 + c2 = f0, c1a1 + c2a2 = f1 is
underdefined when a1 = a2. However, when the characteristic equation has a root
a1 with multiplicity 2, then fn = c1a

n
1 + c2nan−1

1 also satisfies the recurrence (we
have multiplied with n the second term). Please prove by induction on n that this
expression for fn satisfies the recurrence. Now we can solve for c1, c2 and obtain:

fn = 2 · 3n + n · 3n−1

In general, if ai is a root with multiplicity k, then we include in fn all the terms
an

i , nan−1
i , n(n− 1)an−2

i , . . . , n(n− 1) · · · (n− k + 1)an−k+1
i .
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