CSE 321 Discrete Structures

February 10th, 2010

Lecture 15: Public Cryptography
Announcements

• Midterms are graded (see catalysttools)

• Homework is due on Friday as usual

• No class on Monday
Cryptography

ALICE → BOB
Perfect encryption

“One time pad”:

• Alice and Bob have a shared n-bit secret S
• To send an n-bit message M, Alice sends $M \oplus S$ to Bob
• Bob receives the message N, to decode, Bob computes $N \oplus S$
• Note: can’t reuse S (various attacks exist)
• But if S is unique, then this perfect encryption

What is the problem with the one time pad?
The Key Distribution Problem
Public Key Cryptography

- Alice has a “public key” and a “private key”
- Everyone encrypts with her public key
- She decrypts with her private key

My public key is:
13890580304018329082310291802
19821092381083012982301912809
21830213983012923813204980680
29809347849394598178479388287
39845792389384892882374828382
99293840200109243809158092832
90823823
RSA

• Rivest – Shamir – Adelman

1. Choose \(p, q \) are large primes
2. Let \(n = pq \).
3. Choose \(e \) relatively prime to \((p-1)(q-1) \)
4. Let \(d = e^{-1} \mod (p-1)(q-1) \)
5. Alice publishes:
 i. \(n \)
 ii. \(e \) as the encryption key
6. Alice keeps private:
 i. \(p \) and \(q \)
 ii. \(d \) as the decryption key
Message protocol

• Bob
 – Read e, n from Alice’s public site
 – To encrypt message M: $C = M^e \mod n$
 – Send C to Alice

• Alice
 – Receive C from Bob
 – To decrypt message C: $M = C^d \mod n$
Why Decryption Works

- \(d = e^{-1} \mod (p-1)(q-1) \Rightarrow de = 1 + k(p-1)(q-1) \)
- \(C^d \equiv (M^e)^d = M^{de} = M^{1 + k(p-1)(q-1)} \mod n \)
- \(C^d \equiv M (M^{p-1})^k(q-1) \equiv M \mod p \)
- \(C^d \equiv M (M^{q-1})^k(p-1) \equiv M \mod q \)
- Hence \(C^d \equiv M \mod pq \)
 - By the Chinese remainder theorem
- Note: we must have \(M < p \) and \(M < q \)
Why RSA is Secure

- Malory (the bad guy) wants to steal M
- Malory knows: C, d, n
- Malory needs: d (= e^{-1} \mod (p-1)(q-1))
- Nobody knows how to compute e better than this:
 - Factor n = p*q
 - Compute d = e^{-1} \mod (p-1)(q-1)
- Nobody knows how to factor n efficiently
Practical Aspects

How do we find a large primes \(p, q \)?

- Choose a number \(p \) randomly
- Test if it is prime
 - How ??? Next lecture
- If not prime, choose another number
 - How many times do we need to try ??? Next lecture
Practical Aspects

• How do we compute \(d = e^{-1} \mod (p-1)(q-1) \) ?
 – Note that \(\gcd(e, (p-1)(q-1)) = 1 \)
 – Extended Euclid’s algorithm: find \(d, k \) s.t.:
 \[d \cdot e + k \cdot (p-1)(q-1) = 1 \]

• How do we exponentiate efficiently ?
 – Bob: \(M^e \mod n \)
 – Alice: \(C^d \mod n \)
 – Use “fast exponentiation”
 • Next lecture, but recall “fast multiplication”!

2/10/2010