CSE 321 Discrete Structures

January 22, 2010
Lecture 08: Inductive Definitions
Recursive Definitions of Sets

• Recursive definition
 – Basis step: 0 ∈ S
 – Recursive step: if x ∈ S, then x + 2 ∈ S

What is the set S?

• Exclusion rule: Every element in S follows from basis steps and a finite number of recursive steps

Terminology: “Recursive definition” = “Inductive Definition”
Recursive Definitions of Sets

• Recursive definition
 – Basis step: \(7 \in S\)
 – Recursive step: if \(x \in S, x \in S\), then \(x - y \in S\)

• Note: here we allow arbitrary integers, positive and negative

What is the set \(S\) ?
Recursive Definitions of Sets

• Recursive definition
 – Basis step: $12 \in S$ and $21 \in S$
 – Recursive step: if $x \in S$, $x \in S$, then $x - y \in S$

What is the set S?
Strings

The set Σ^* of strings over the alphabet Σ is defined as follows:

• Basis: $\lambda \in \Sigma^*$ (λ is the empty string)

• Recursive: if $w \in \Sigma^*$, $x \in \Sigma$, then $wx \in \Sigma^*$

Note: we sometimes write ε for the empty string
Strings

• Example: $\Sigma = \{a, b, c\}$. What is Σ^*?

• $\Sigma^* = \{ \varepsilon, a, b, aa, ab, ba, bb, aaa, aab, \ldots \}$
Families of strings over $\Sigma = \{a, b\}$

- L_1
 - $\lambda \in L_1$
 - $w \in L_1$ then $awb \in L_1$

- What is L_1?
Families of strings over $\Sigma = \{a, b\}$

- L_2
 - $\lambda \in L_2$
 - $w \in L_2$ then $aw \in L_2$
 - $w \in L_2$ then $wb \in L_2$

- What is L_2?
Families of strings over $\Sigma = \{a, b\}$

- Think of a as “(“ and of b as “)”
- Define recursively the set L_3 of all well-formed parenthesis

- Strings that should be in L_3:
 - aaabbb, abababab, aabbabaaabbb, …
- Strings that should not be in L_3:
 - aab (too many a’s), ba (unmatched), abbaab (unmatched)
Recursive Function definitions

The length of a string: \(\textbf{Len} : \Sigma^* \rightarrow \text{Int} \)
\[
\text{Len}(\lambda) = 0; \\
\text{Len}(wx) = 1 + \text{Len}(w); \text{ for } w \in \Sigma^*, x \in \Sigma
\]

The concatenation of two strings: \(\textbf{Concat} : \Sigma^* \times \Sigma^* \rightarrow \Sigma^* \)
\[
\text{Concat}(w, \lambda) = w \text{ for } w \in \Sigma^* \\
\text{Concat}(w_1, w_2x) = \text{Concat}(w_1, w_2)x \text{ for } w_1, w_2 \text{ in } \Sigma^*, x \in \Sigma
\]
Well Formed Formulae

• $\Sigma = \{p, q, r, s, \ldots, T, F, \land, \lor, \rightarrow, \neg, (,)\}$
• Define Well-Formed-Formula for propositional logic
• Basis Step
 – p, q, r, s, \ldots T, F are in WFF
• Recursive Step
 – If E and F are in WFF then $(\neg E), (E \land F), (E \lor F), (E \rightarrow F)$ are in WFF
Well Formed Fomulae

Write recursive definitions on WFF for the following functions:

• Count the number of \wedge’s in the formula
• Test if a formula is positive, i.e. every atomic formula occurs under an even number of \neg symbols (recall that $p \rightarrow q = \neg p \lor q$):

 $(\neg (\neg p \land \neg q)) \lor (s \land \neg \neg t)$ is positive

 $(\neg p \rightarrow s) \land t$ is positive

 $p \rightarrow s$ is not positive
Di-Graphs (Directed Graphs)

- Nodes: A, B, …
- Edges: A → B, …

- **Paths** from A to E:
 - A, B, E
 - A, B, D, E
 - A, B, F, A, B, F, A, B, E

- **Cycle**: A, B, F, A
A Directed Acyclic Graph (DAG) is a graph without cycles.

A tree is like this:
What is a “tree”?

• “A tree is a graph such that….”
 – How would you define a tree?
 – Want a tree to have a distinguished node, called the “root”
A Recursive Definition of Trees

• A graph with a single node r is a tree and its root is r.

• If t_1, t_2, ..., t_n are trees with roots r_1, r_2, ..., r_n, then the graph consisting of t_1, t_2, ..., t_n, a new node r, and n edges (r, r_i), $i=1, n$, is a tree and its root is r.
Extended Binary Trees

- The empty graph is an extended binary tree.

- A nonempty extended binary tree has a root node r, with a left child t_1 and a right child t_2 s.t. both t_1 and t_2 are extended binary trees.
Subtle Distinction

In an extended binary tree we distinguish between the left child and the right child:

- Left child only
- Right child only
- Not an “extended” binary tree
Full binary trees

• Now we want to rule out the empty trees and empty subtrees: “full binary tree”

• How do we do this?
Extended Binary Trees

• The graph consisting of a single node is a full binary tree

• A nonempty full binary tree has a root node r, with a left child t_1 and a right child t_2 s.t. both t_1 and t_2 are full binary trees
Simplifying notation

- (\cdot, T_1, T_2), tree with left subtree T_1 and right subtree T_2
- ϵ is the empty tree
- Extended Binary Trees (EBT)
 - $\epsilon \in EBT$
 - if $T_1, T_2 \in EBT$, then $(\cdot, T_1, T_2) \in EBT$
- Full Binary Trees (FBT)
 - $\cdot \in FBT$
 - if $T_1, T_2 \in FBT$, then $(\cdot, T_1, T_2) \in FBT$
Recursive Functions on Trees

- \(N(T) \) - number of vertices of \(T \)
- \(N(\varepsilon) = 0; \ N(\bullet) = 1 \)
- \(N(\bullet, T_1, T_2) = 1 + N(T_1) + N(T_2) \)

- \(Ht(T) \) – height of \(T \)
- \(Ht(\varepsilon) = 0; \ Ht(\bullet) = 1 \)
- \(Ht(\bullet, T_1, T_2) = 1 + \max(Ht(T_1), Ht(T_2)) \)

NOTE: Height definition differs from the text
Base case \(H(\bullet) = 0 \) used in text
More tree definitions: Fully balanced binary trees

- ε is a FBBT.
- if T_1 and T_2 are FBBTs, with $Ht(T_1) = Ht(T_2)$, then (\cdot, T_1, T_2) is a FBBT.
And more trees:
Almost balanced trees

- ε is a ABT.

- If T_1 and T_2 are ABTs with $Ht(T_1) - 1 \leq Ht(T_2) \leq Ht(T_1) + 1$ then (\bullet, T_1, T_2) is a ABT.