Discrete Structures

Functions

Chapter 2, Section 2.3

Dieter Fox
Functions

♦ \(f : A \rightarrow B \): A function from \(A \) to \(B \) is an assignment of exactly one element of \(B \) to each element of \(A \).

♦ \(A \) is the domain of \(f \) and \(B \) is the codomain of \(f \).

♦ If \(f(a) = b \), we say that \(b \) is the image of \(a \) and \(a \) is a pre-image of \(b \). The range of \(f \) is the set of all images of elements of \(A \).

♦ \(f \) maps from \(A \) to \(B \).

♦ \(f_1 + f_2, f_1 f_2 \): Let \(f_1 \) and \(f_2 \) be functions from \(A \) to \(R \). Then
 \[
 (f_1 + f_2)(x) = f_1(x) + f_2(x),
 \]
 \[
 (f_1 f_2)(x) = f_1(x) f_2(x)
 \]
Functions

♦ **Injection:** Function f is said to be one-to-one, if and only if $f(x) = f(y)$ implies that $x = y$ for all x and y in the domain of f.

♦ Function f whose domain and codomain are subsets of the set of real numbers is called strictly increasing if $f(x) < f(y)$ whenever $x < y$ and x and y are in the domain of f (decreasing analogous).

♦ **Surjection:** Function f is said to be onto / surjective, if and only if for every element $b \in B$ there is an element $a \in A$ with $f(a) = b$.

♦ **Bijection:** Function f is a one-to-one correspondence, or bijection, if it is both one-to-one and onto.

♦ **Inverse function:** Let f be a one-to-one correspondence from A to B. The inverse function of f assigns to an element b in B the unique element a in A such that $f(a) = b$. The inverse function of f is denoted by f^{-1}. Hence, $f^{-1}(b) = a$ when $f(a) = b$.
Functions

♦ $f \circ g$: $g : A \to B$, $f : B \to C$. The composition of the functions f and g is defined by
\[(f \circ g)(a) = f(g(a))\]

♦ $\lfloor x \rfloor$ The floor function assigns to the real number x the largest integer that is less than or equal to x.

♦ $\lceil x \rceil$ The ceiling function assigns to the real number x the smallest integer that is greater than or equal to x.