Insertion Sort

A: 0 .. n-1
For i = 1 .. n-1 {
 T = A[i]
 j = i
 while j > 0 & T < A[j-1] {
 j = j - 1
 }
 A[j+1] = T
Run Time
worst-case $O(n^2)$ \(\approx \frac{n^2}{2} \) swaps

- compare = \# swap + \(n-1 \)

\(n! \) "different" inputs:
- Assume all \(n! \) inputs equally likely

Permutations:

\[
\begin{array}{c}
1 & 2 & 3 & 4 & 5 \\
1 & 3 & 5 & 2 & 4
\end{array}
\]

\((i,j) \) is an inversion in \(\pi \)
- if \(i < j \) but \(\pi_i > \pi_j \)

- Example:
 - \(12345 \) : No inversion
 - \(54321 \) : \(\frac{5}{2} \) inversions
 (The max)

29-2
Swapping an adjacent pair of positions that are out of order decreases # of inversions by exactly 1.

of swaps by insertion sort exactly # of inversions in its input

\[I_{i,j} = \begin{cases}
1 & \text{if } (i,j) \text{ is an inversion} \\
0 & \text{if not}
\end{cases} \]

\[\# \text{ of inversions } \quad I = \sum_{i<j} I_{i,j} \]
\[E(I) = \sum_{i<j} E(I_{ij}) \]

\[\pi \]

\[\pi' \]

\[\phi(I_{ij} = 1) = E(I_{ij}) = \frac{1}{2} \]

(for every \(\pi \) where \((i,j)\) is an inversion, there is \(\pi' \) where it's not.)

\[E(I) = \sum_{ij} \pi_{ij} \cdot \frac{1}{2} = \left(\frac{n}{2}\right) \cdot \frac{1}{2} \]

\[\therefore \text{Expected \# of swaps} = \left(\frac{n}{2}\right)/2 \]

vs worst case \((\frac{\binom{n}{2}}{2}) \)

i.e. average runtime (assuming random input) is \(\sim \frac{1}{2} \) of worst case
\[E(x+y) = E(x) + E(y)\]

\[\forall (x+y) = \forall (x) + \forall (y) \quad \text{(in general)}\]

but = if \(x\) \& \(y\) are indp.

\[E(x \cdot y) \neq E(x) \cdot E(y)\]

\(\neq\) in general, but

\[E(x \cdot y) \neq E(x) \cdot E(y)\]

Example:

\(x = 0/1\) and \(w / p = 1/2\)

\(y = x\)

\[E(x) = \frac{1}{2} = E(y)\]

\[E(x \cdot y) = \frac{1}{2} \cdot 1 \cdot 1 + \frac{1}{2} \cdot 0 \cdot 0 = \frac{1}{2} \neq \left(\frac{1}{2}\right)^2 = E(x) \cdot E(y)\]