Define \(a \mod m = r \) at some \(q \) and \(a = qm + r \)

Function \(\mathbb{Z} : \{0 \ldots m-1\} \)

Define \(a \equiv b \pmod{m} \) \(\text{relation} \)

\(m \mid (a-b) \)

\(a = b + km \) for some \(k \)

Then \(a \equiv b \pmod{m} \) \& \(c \equiv d \pmod{m} \)

Then \(a + c \equiv b + d \pmod{m} \)

\(ac \equiv bd \pmod{m} \)

\(m \mid a-b \)

\(m \mid c-d \)

\[\therefore m \mid (a-b)+(c-d) \]

\(a+c \equiv b+d \pmod{m} \)

\(\therefore a+c \equiv b+d \pmod{m} \)
if \(ac \equiv bc \pmod{m} \)

is \(a \equiv b \pmod{m} \)?

\[\begin{align*}
14 & \equiv 8 \pmod{6} \\
7 & \not\equiv 4 \pmod{6}
\end{align*} \]

but always true if \(\gcd(m,c) = 1 \)

\[\text{PT} \]

\[\begin{align*}
m & \mid ac - bc \\
m & \mid c(a - b) \\
since \gcd(m,c) = 1 \\
\therefore m & \mid a - b \\
\therefore \ & a \equiv b \pmod{m}
\end{align*} \]
when/how solve

\[a \times b \equiv b \pmod{m} \]

if \[\text{I had } a \cdot x \equiv a \cdot a \equiv 1 \pmod{m} \]

Thus if \(\gcd(a, m) = 1 \)

Then \(\exists \bar{a}: a \cdot \bar{a} \equiv 1 \pmod{m} \)

\text{Multiplicative inverse of } a \]

Furthermore \(\bar{a} \) is unique up to \(\pmod{m} \)

\text{proof (existence only)}

\[\exists x, \text{ s.t. } a \cdot x + t \cdot m = 1 \]

\[t \cdot m \equiv 0 \pmod{m} \]
\[-t \cdot m \equiv 0 \pmod{m} \]

\[a \cdot t \equiv 1 \pmod{m} \]
\[-t \cdot m \equiv 0 \pmod{m} \]

\[a \cdot a \equiv 1 \pmod{m} \]

(can find \(\bar{a} = s \) via Euclid)
Chinese Remainder Theorem (CRT)

\[x \equiv a_i \pmod{m_i} \text{ for } i = 1, 2, \ldots, n \]
\[\gcd(m_i, m_j) = 1 \text{ for } i \neq j \]

\exists \text{ unique } 0 \leq x < M = \prod m_i \text{ satisfying these equations.}

Proof

let \(M_k = \frac{M}{m_k} \)

\[y_k \cdot M_k \equiv 1 \pmod{m_k} \]
\[\exists \text{ since } \gcd(M_k, m_k) = 1 \]

\[x = \sum_i a_i \frac{M_i}{m_i} y_i \pmod{m_j} \]
\[\equiv a_j \cdot M_j y_j \pmod{m_j} \]
\[\equiv a_j \pmod{m_j} \]
Fermat's Little Theorem

If \(p \) is prime and \(a \) is not divisible by \(p \), then

\[
a^{p-1} \equiv 1 \pmod{p}
\]

For all \(a \) not divisible by \(p \),

\[
a^{p-1} \equiv a \pmod{p}
\]

- Example:
 - \(a = 5, \ n = 10 \)
 - \(5^9 \equiv 5 \pmod{10} \)
 - \(5^3 = 125 \equiv 5 \pmod{10} \)

Fact: \(2^{n-1} \equiv 1 \pmod{n} \)

For all but 22 composite numbers \(n \) less than 10,000.
Fermat's Little Theorem

If p is prime and $p \nmid a$, then

\[a^{p-1} \equiv 1 \pmod{p} \]

And for all a

\[a^p \equiv a \pmod{p} \]

Proof

\[\gcd(a, p) = 1 \]

\[f: \mathbb{Z}_p \rightarrow \mathbb{Z}_p f(i) = ai \pmod{p} \text{ is bijection} \]

\[\prod_{i=1}^{p-1} i = \prod_{i=1}^{p-1} f(i) \]

\[(p-1)! \equiv a^{p-1} (p-1)! \pmod{p} \]

\[\gcd((p-1)!, p) = 1 \]

\[l \equiv a^{p-1} \pmod{p} \]

See also Rosen 3.7 #19
RSA - A Public Key Cryptosystem

Alice:
1. Privately chooses two primes p, q of, say, 500 bits each, and an e rel. prime to $(p-1)(q-1)$.
2. Privately computes $n = p \cdot q$
 and d such that $e \cdot d \equiv 1 \pmod{(p-1)(q-1)}$
3. Publishes n and e, in the phonebook
 (Keep p, q, d private.)

Bob (or anyone else):

Sends her an message M by looking up her n, e and sending $C = M^e \mod n$

Alice decrypts by computing $C^d \mod n = M$.

Issues:
- do d always exist?
- how hard to compute?
- why $(M^e)^d \mod n = M$?
- how to compute d?