Announcements

- **Readings**
 - This week:
 - 6th edition: 4.3, 4.4, 5.1, 5.2
 - 5th edition: 3.4, 3.5, 4.1, 4.2
- **Midterm:**
 - Mean 67, Median 68

<table>
<thead>
<tr>
<th>Score Range</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>71-80</td>
<td>10</td>
</tr>
<tr>
<td>61-70</td>
<td>16</td>
</tr>
<tr>
<td>51-60</td>
<td>7</td>
</tr>
<tr>
<td>0-50</td>
<td>1</td>
</tr>
</tbody>
</table>

Induction Example (revisited)

- Given a set S of $n+1$ positive integers, none exceeding $2n$, show that S is divisible.
- Paul Beame’s proof
 - Let $S \subseteq \{1, \ldots, 2n\}$ be non-divisible
 - Every element in S can be written as m^2i where m is odd
 - We cannot have m^2i and m^2j both in S
 - Hence $|S| \leq n$

Highlights from Lecture 14

- **Recursive Definitions**
 - $F(0) = 1; F(n+1) = 2F(n)$
 - $f_0 = 0; f_1 = 1; f_n = f_{n-1} + f_{n-2}$

Recursive Definitions of Sets

- **Recursive definition**
 - Basis step: $0 \in S$
 - Recursive step: if $x \in S$, then $x + 2 \in S$
 - Exclusion rule: Every element in S follows from basis steps and a finite number of recursive steps

Recursive definitions of sets

Basis: $6 \in S; 15 \in S$
Recursive: if $x, y \in S$, then $x + y \in S$

Basis: $[1, 1, 0] \in S, [0, 1, 1] \in S$
Recursive:
- if $[x, y, z] \in S, \alpha \in R$, then $[\alpha x, \alpha y, \alpha z] \in S$
- if $[x_1, y_1, z_1], [x_2, y_2, z_2] \in S$
 - then $[x_1 + x_2, y_1 + y_2, z_1 + z_2]$

Powers of 3
Strings

- The set Σ^* of strings over the alphabet Σ is defined
 - Basis: $\lambda \in \Sigma$ (the empty string)
 - Recursive: if $w \in \Sigma^*$, $x \in \Sigma$, then $wx \in \Sigma^*$

Families of strings over $\Sigma = \{a, b\}$

- L_1
 - $\lambda \in L_1$
 - $w \in L_1$ then $awb \in L_1$

- L_2
 - $\lambda \in L_2$
 - $w \in L_2$ then $aw \in L_2$
 - $w \in L_2$ then $wb \in L_2$

Function definitions

- $\text{Len}(\lambda) = 0$
- $\text{Len}(wx) = 1 + \text{Len}(w)$ for $w \in \Sigma^*$, $x \in \Sigma$

- $\text{Concat}(w, \lambda) = w$ for $w \in \Sigma^*$
- $\text{Concat}(w_1, w_2x) = \text{Concat}(w_1, w_2)x$ for w_1, w_2 in Σ^*, $x \in \Sigma$

Well Formed Formulae

- Basis Step
 - T, F, and s, where s is a propositional variable are in WFF

- Recursive Step
 - If E and F are in WFF then $(\neg E)$, $(E \land F)$,
 $(E \lor F)$, $(E \rightarrow F)$ and $(E \leftrightarrow F)$ are in WFF

Tree definitions

- A single vertex r is a tree with root r.
- Let t_1, t_2, \ldots, t_n be trees with roots r_1, r_2, \ldots, r_n respectively, and let r be a vertex. A new tree with root r is formed by adding edges from r to r_1, \ldots, r_n.

Extended Binary Trees

- The empty tree is a binary tree.
- Let r be a node, and T_1 and T_2 binary trees. A binary tree can be formed with T_1 as the left subtree and T_2 as the right subtree. If T_1 is non-empty, there is an edge from the root of T_1 to r. Similarly, if T_2 is non-empty, there is an edge from the root of T_2 to r.
Full binary trees

• The vertex \(r \) is a FBT.
• If \(r \) is a vertex, \(T_1 \) a FBT with root \(r_1 \) and \(T_2 \) a FBT with root \(r_2 \) then a FBT can be formed with root \(r \) and left subtree \(T_1 \) and right subtree \(T_2 \) with edges \(r \to r_1 \) and \(r \to r_2 \).

Simplifying notation

• \((\bullet, T_1, T_2)\), tree with left subtree \(T_1 \) and right subtree \(T_2 \)
• \(\epsilon\) is the empty tree
• Extended Binary Trees (EBT)
 – \(\epsilon \in \text{EBT}\)
 – if \(T_1, T_2 \in \text{EBT} \), then \((\bullet, T_1, T_2) \in \text{EBT}\)
• Full Binary Trees (FBT)
 – \(\epsilon \in \text{FBT}\)
 – if \(T_1, T_2 \in \text{FBT} \), then \((\bullet, T_1, T_2) \in \text{FBT}\)

Recursive Functions on Trees

• \(N(T)\) - number of vertices of \(T \)
• \(N(\epsilon) = 0; N(\bullet) = 1\)
• \(N(\bullet, T_1, T_2) = 1 + N(T_1) + N(T_2)\)

• \(Ht(T)\) – height of \(T \)
• \(Ht(\epsilon) = 0; Ht(\bullet) = 1\)
• \(Ht(\bullet, T_1, T_2) = 1 + \max(Ht(T_1), Ht(T_2))\)

More tree definitions: Fully balanced binary trees

• \(\epsilon\) is a FBBT.
• if \(T_1 \) and \(T_2 \) are FBBTs, with \(Ht(T_1) = Ht(T_2) \), then \((\bullet, T_1, T_2)\) is a FBBT.

And more trees: Almost balanced trees

• \(\epsilon\) is a ABT.
• if \(T_1 \) and \(T_2 \) are ABTs with \(Ht(T_1)-1 \leq Ht(T_2) \leq Ht(T_1)+1 \) then \((\bullet, T_1, T_2)\) is a ABT.

Structural Induction

• Show \(P \) holds for all basis elements of \(S \).
• Show that \(P \) holds for elements used to construct a new element of \(S \), then \(P \) holds for the new elements.
Prove all elements of S are divisible by 3

- **Basis:** $6 \in S; \ 15 \in S$
- **Recursive:** if $x, y \in S$, then $x + y \in S$

Prove that WFFs have the same number of left parentheses as right parentheses