PROBLEM SET 4 Due Wednesday, May 2, 2007, in class

Instructions: Same as for Problem Set 1.

- 1. Which amounts of money can be formed using just dimes and quarters? Prove your answer using a form of mathematical induction.
- 2. The Fibonacci numbers are the sequence of numbers $0, 1, 1, 2, 3, 5, 8, 11, \ldots$ where each number is the sum of the two previous numbers. More precisely the sequence $\{F_n\}_{n\geq 0}$ of numbers is given by: $F_0 = 0$, $F_1 = 1$, and $F_n = F_{n-1} + F_{n-2}$ for $n \geq 2$. Using mathematical induction, prove the following explicit formula for the Fibonacci sequence:

$$F_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{1-\sqrt{5}}{2} \right)^n \right] \ , \quad n \ge 0 \ .$$

- 3. (a) How many zeroes are there at the end of 80!? <u>Hint</u>: Think about the unique factorization of 80! into primes.
 - (b) Find the rightmost digit (digit in unit place) when the following numbers are written in decimal:
 - i. $(37)^{1025}$
 - ii. $1! + 2! + 3! + \dots + 100!$

(If you follow the method outlined in class, you should never have to compute a product greater than $5 \cdot 5$.)

- 4. (a) Let a, b be positive integers. Define $S_{a,b}$ to be the set of all **positive** integers that can be written in the form sa + tb for integers s, t. Prove that the smallest element in $S_{a,b}$ (why should it exist?) is in fact equal to gcd(a, b).
 - (b) Prove that the linear equation ax + by = c where a, b, c are integers and a ≠ 0 and b ≠ 0 has a solution in integers (x, y) if and only if gcd(a, b)|c.
 (Do not forget to show both directions of the "if and only if")
- 5. Compute the greatest common divisor for each of the following pairs of numbers.
 - (a) 1000, 625
 - (b) $3^5 \cdot 5^5 \cdot 7^7$, $9^2 \cdot 10^4 \cdot 21$
 - (c) 80!, 127
- 6. (a) Use Euclid's algorithm to compute gcd(832, 247). (Show your work.)
 - (b) Use the extended Euclid's algorithm to find an integer x such that $357x \equiv 7 \pmod{247}$.

7. In this exercise, you will explore an instance how modular arithmetic can be used for error detection. The specific example we will work with is the ISBN (International Standard Book Number) system to identify books published worldwide.

The ISBN of a book is usually found on the last cover page (for instance, for your textbook, the ISBN is 0072880082). The current standard uses a 10-digit code where the first nine digits identify the book and the last digit is a *check digit* to detect mistakes in, say, typing or communicating ISBNs. An ISBN can thus be viewed as a sequence of 10 digits $x_1x_2...x_{10}$ where for all $i = 1, 2, ..., 9, x_i$ is one of the digits 0, 1, 2, ..., 9. The check digit x_{10} has 11 possible values $\{0, 1, 2, ..., 10\}$ (if the check digit happens to be a 10, it is denoted by the Roman numeral X).

Modular arithmetic is used to assign a check bit to a particular book in the following way. Suppose the first nine digits x_1, x_2, \ldots, x_9 of an ISBN have been chosen (the exact way these are assigned by publishers is not important to us here). The check digit x_{10} is determined by the following congruence:

$$1x_1 + 2x_2 + \dots + 8x_8 + 9x_9 + 10x_{10} \equiv 0 \pmod{11}$$
.

(If you are curious, you can check that the ISBN 0072880082 for your textbook satisfies the above!)

Now to your exercises.

- (a) Let $x_1x_2 \cdots x_9x_{10}$ be the correct ISBN of a book. Suppose that, during the billing procedure, a single error has been made in entering the ISBN; i.e., in the *i*'th place for some *i*, y_i is printed instead of x_i where $x_i \neq y_i$. Prove that this error can be *detected*; formally, show that the resulting 10 digit sequence is not a valid ISBN.
- (b) Same as above, except now consider the error where two *unequal* digits x_i, x_j are swapped, that is an error of the form

 $x_1x_2\cdots x_ix_{i+1}\cdots x_jx_{j+1}\cdots x_9x_{10} \longrightarrow x_1x_2\cdots x_jx_{i+1}\cdots x_ix_{j+1}\cdots x_9x_{10}$

where $x_i \neq x_j$.