Reading Assignment: 6th Edition: 8.1,8.3-8.5,9.1-9.5,9.7 (or, 5th Edition: 7.1,7.3-7.5,8.18.5,8.7).

Problems:

1. For the relation $R=\{(b, c),(b, e),(c, e),(d, a),(e, b),(e, c)\}$ on $\{a, b, c, d, e\}$, draw the following relations in directed graph form:
(a) The reflexive closure of R.
(b) The symmetric closure of R.
(c) The transitive closure of R.
(d) The reflexive, symmetric, transitive closure of R.
2. Let R be the relation on the set of ordered pairs of positive integers such that $((a, b),(c, d)) \in R$ if and only if $a d=b c$. Show that R is an equivalence relation. (Note that this is a relation on a set of ordered pairs. Don't get confused and think that the ordered pairs by themselves are a relation.)
3. Show that the sum, over the set of people at a party, of the number of people a person has shaken hands with is even. Assume that no one shakes his or her own hand.
4. Prove that any (simple, undirected) graph on $n \geq 2$ vertices contains two vertices of equal degree.
5. Extra credit: For undirected simple graphs, prove that if G is disconnected, then \bar{G}, the complement of G, is connected. (Recall that \bar{G} contains all and only those edges that are absent in G.)
6. Extra credit: Suppose that G is a simple, undirected graph and every vertex of G has degree at least d for some $d>2$. Prove that G must contain a (simple) cycle of length at least $d+1$.
