Reading Assignment: 6th Edition: 3.5-3.6 and 4.1-4.2 (or, 5th Edition: 2.4-2.5 \& 3.3).
Problems:

1. Prove that if n is an integer, then $n^{2} \bmod 8$ is either 0,1 , or 4 .
2. Compute the greatest common divisor for each of the following pairs of numbers.
(a) $2^{2} \cdot 3^{3} \cdot 5^{5}, 2^{5} \cdot 3^{3} \cdot 5^{4}$
(b) 1000,625
(c) $20!, 127$
3. Prove that if a, b, and m are integers such that $m \geq 2$ and $a \equiv b(\bmod m)$ then $\operatorname{gcd}(a, m)=\operatorname{gcd}(b, m)$.
4. Use induction to show that $1^{3}+2^{3}+\cdots+n^{3}=[n(n+1) / 2]^{2}$ whenever n is a positive integer.
5. Casting out nines: Prove that a number is divisible by 9 if and only if the sum of its digits is divisible by 9 . More specifically, for a positive integer a, let digitsum (a) be the sum of the decimal digits of a. Prove by induction on the number of decimal digits in a that $a \equiv \operatorname{digitsum}(a)(\bmod 9)$.
Hint: Express a as $\sum_{i=0}^{n} a_{i}(10)^{i}$ where $a_{i} \in\{0,1,2,3,4,5,6,7,8,9\}$.
6. Sometimes it's easier to prove a stronger statement than is apparently required. In this problem you will prove by induction that for all $n \geq 1$,

$$
\frac{1}{1^{3}}+\frac{1}{2^{3}}+\frac{1}{3^{3}}+\cdots+\frac{1}{n^{3}} \leq \frac{3}{2}
$$

(a) What doesn't work if you try to produce an inductive proof in which $P(n)$ is the statement that $\sum_{k=1}^{n} \frac{1}{k^{3}} \leq \frac{3}{2}$?
(b) Now use induction to prove the stronger statement that for all $n \geq 1$, $\sum_{k=1}^{n} \frac{1}{k^{3}} \leq \frac{3}{2}-\frac{1}{2 n^{2}}$.
7. Find the flaw with the following "proof" that $a^{n}=1$ for all non-negative integers n, whenever $a>0$.
(a) Basis step: $a^{0}=1$ is true by the definition of a^{0}.
(b) Inductive step:

$$
a^{k+1}=\frac{a^{k} \cdot a^{k}}{a^{k-1}}=\frac{1 \cdot 1}{1}=1 .
$$

8. Extra credit: Use the results of problem 1 above to show that the equation

$$
3 x^{2}-2 y^{2}=69
$$

does not have any solution with x and y both integers.
9. Extra credit: Consider any $n+1$ numbers between 1 and $2 n$ (inclusive). Show that some pair of them is relatively prime. Show that one is a factor of another.

