Reading Assignment: Section 3.3-3.4, 4.1-4.3 of Rosen.

Problems:

1. Use Euclid’s algorithm to compute the following showing all the intermediate steps: gcd(3939, 143).

2. Let a, b and c be integers. Prove that if a does not divide bc, then a does not divide c.

3. (a) Let a, b be positive integers. Define $S_{a,b}$ to be the set of all positive integers that can be written in the form $sa + tb$ for integers s, t. Prove that the smallest element in $S_{a,b}$ (why should it exist?) is in fact equal to gcd(a, b).

 (b) Prove that the linear equation $ax + by = c$ where a, b, c are integers and $a \neq 0$ and $b \neq 0$ has a solution in integers (x, y) if and only if gcd$(a, b) | c$.

4. Section 3.3, exercise 10.

5. Section 3.3, exercise 12.

6. Section 3.3, exercise 44.

7. Use mathematical induction to prove that

$$\sum_{k=1}^{n} k2^k = (n - 1)2^{n+1} + 2.$$