♦ Let A and B be sets. A **binary relation from A to B** is a subset of $A \times B$. If $(a, b) \in R$, we write aRb and say a is related to b by R.

♦ A **relation on** the set A is a relation from A to A.

♦ A relation R on a set A is called **reflexive** if $(a, a) \in R$ for every element $a \in A$.

♦ A relation R on a set A is called **symmetric** if $(b, a) \in R$ whenever $(a, b) \in R$, for $a, b \in A$.

♦ A relation R on a set A such that $(a, b) \in R$ and $(b, a) \in R$ only if $a = b$, for $a, b \in A$, is called **antisymmetric**.

♦ A relation R on a set A is called **transitive** if whenever $(a, b) \in R$ and $(b, c) \in R$, then $(a, c) \in R$, for $a, b \in A$.
Combining Relations

◊ Let R be a relation from a set A to a set B and S be a relation from B to a set C. The **composite** of R and S is the relation consisting of ordered pairs (a, c), where $a \in A$, $c \in C$, and for which there exists an element $b \in B$ such that $(a, b) \in R$ and $(b, c) \in S$.
We denote the composite of R and S by $S \circ R$.

◊ Let R be a relation on the set A. The **powers** R^n, $n = 1, 2, 3, \ldots$, are defined inductively by

\[
R^1 = R \quad \text{and} \quad R^{n+1} = R^n \circ R.
\]

◊ **Theorem** : The relation R on a set A is transitive if and only if

\[
R^n \subseteq R \text{ for } n = 1, 2, 3, \ldots.
\]
Let P be a property of relations (transitivity, reflexivity, symmetry). A relation S is closure of R w.r.t. P if and only if S has property P, S contains R, and S is a subset of every relation with property P containing R.
A directed graph, or digraph, consists of a set V of vertices (or nodes) together with a set E of ordered pairs of elements of V called edges (or arcs).

A path from a to b in the directed graph G is a sequence of one or more edges $(x_0, x_1), (x_1, x_2), \ldots (x_{n-1}, x_n)$ in G, where $x_0 = a$ and $x_n = b$. This path is denoted by x_0, x_1, \ldots, x_n and has length n. A path that begins and ends at the same vertex is called a circuit or cycle.

There is a path from a to b in a relation R is there is a sequence of elements $a, x_1, x_2, \ldots x_{n-1}, b$ with $(a, x_1) \in R, (x_1, x_2) \in R, \ldots, (x_{n-1}, b) \in R$.

Theorem: Let R be a relation on a set A. There is a path of length n from a to b if and only if $(a, b) \in R^n$.
Connectivity

♦ Let R be a relation on a set A. The **connectivity relation** R^* consists of pairs (a, b) such that there is a path between a and b in R.

♦ **Theorem:** The transitive closure of a relation R equals the connectivity relation R^*.

D. Fox, CSE-321 Chapter 7, Sections 7.1 - 7.5
Partitions

◊ We want to use relations to form partitions of a group of students. Each member of a subgroup is related to all other members of the subgroup, but to none of the members of the other subgroups.

◊ Use the following relations:

 Partition by the relation "older than"
 Partition by the relation "partners on some project with"
 Partition by the relation "comes from same hometown as"

◊ Which of the groups will succeed in forming a partition? Why?
A relation on a set A is called an equivalence relation if it is reflexive, symmetric, and transitive. Two elements that are related by an equivalence relation are called equivalent.

Let R be an equivalence relation on a set A. The set of all elements that are related to an element a of A is called the equivalence class of a. $[a]_R$: equivalence class of a w.r.t. R. If $b \in [a]_R$ then b is representative of this equivalence class.

Theorem: Let R be an equivalence relation on a set A. The following statements are equivalent:

1. aRb
2. $[a] = [b]$
3. $[a] \cap [b] \neq \emptyset$
A partition of a set S is a collection of disjoint nonempty subsets $A_i, i \in I$ (where I is an index set) of S that have S as their union:

- $A_i \neq \emptyset$ for $i \in I$
- $A_i \cap A_j = \emptyset$, when $i \neq j$
- $\bigcup_{i \in I} A_i = S$

Theorem: Let R be an equivalence relation on a set S. Then the equivalence classes of R form a partition of S. Conversely, given a partition $\{A_i \mid i \in I\}$ of the set S, there is an equivalence relation R that has the sets $A_i, i \in I$, as its equivalence classes.