1. Prove that if \(n \) is an odd positive integer, then \(n^4 \equiv 1 \pmod{16} \).

2. A **perfect number** is a positive integer that equals the sum of its proper divisors (that is, devisors other than itself). Show that 6, 28, and 496 are perfect.

3. Prove that \(1^2 + 3^2 + 5^2 + \ldots + (2n + 1)^2 = \frac{(n+1)(2n+1)(2n+3)}{3} \) whenever \(n \) is a nonnegative integer.

4. Show that \(2^n > n^2 \) whenever \(n \) is a positive integer greater than 4.

5. An automatic teller machine has only $20 bills and $50 bills. Which amount of money can the machine dispense, assuming the machine has a limitless supply of there two denominations of bills? Prove your answer using a form of mathematical induction.

6. A multiple-choice test contains ten questions. There are four possible answers for each question.

 a. How many ways can a student answer the questions on the test if every question is answered?

 b. How many questions can a student answer the questions on the test if the student can leave answers blank?
1. \[n^4 - 1 = (2k + 1)^4 - 1 = 16k^4 + 32k^3 + 24k^2 + 8k = 8k(1)(2k^2 + 2k + 1) \] One of \(k \) or \(k+1 \) is even, so 16 divides \(n^4 - 1 \).

2. \[
\begin{align*}
1+2+3 &= 6 \\
1+2+4+7+14 &= 28 \\
1+2+4+8+16+31+62+124+248 &= 496
\end{align*}
\]

3. Let \(P(n) \) be \(\text{“} \, 1^2 + 3^2 + \ldots + (2n+1)^2 = (n+1)(2n+1)(2n+3)/3. \text{”} \)

 Basis Step: \(P(0) \) is true since \(1^2 = 1 = (0+1)(2*0+1)(2*0+3)/3 \)

 Inductive Step: Assume that \(P(k) \) is true. Then

 \[
 1^2 + 3^2 + \ldots + (2k+1)^2 + (2(k+1) + 1)^2 = \frac{(k + 1)(2k + 1)(2k + 3)}{3} + (2k + 3)^2
 \]

 \[
 = (2k + 3)\left[\frac{(k + 1)(2k + 1)}{3} + (2k + 3)\right] = \frac{(2k + 3)(2k^2 + 9k + 10)}{3}
 \]

 \[
 = \frac{(2k + 3)(2k + 5)(k + 2)}{3} = \frac{(k + 1)(k + 1)(2(k + 1) + 1)(2(k + 1) + 3)}{3}
 \]

4. Let \(P(n) \) be \(\text{“} \, 2^n > n^2. \text{”} \)

 Basis Step: \(P(5) \) is true since \(2^5 = 32 > 25 = 5^2 \).

 Inductive Step: Assume that \(P(k) \) is true, that is, \(2^k > k^2 \). Then

 \[2^{k+1} = 2 \cdot 2^k > k^2 + k^2 > k^2 + 4k + 2k + 1 = (k + 1)^2 \]

 since \(k > 4 \).

5. All multiples of 10 greater than or equal to 40 can be formed as well as 20. Let \(P(n) \) be the statement that $10n$ dollars can be formed. \(P(4) \) is true since 40 can be formed by using two 20s. Now assume that \(P(k) \) is true with \(k > 4 \). If a 50 bill is used to form $10k$ dollars, replace it by three 20 bills to obtain $10(k+1)$ dollars. Otherwise, at least two 20 bills were used since $10k$ is at least 40. Replace two 20 bills with a 50 bill to obtain $10(k+1)$. This shows that \(P(k+1) \) is true.

6. a) \(4^{10} \)
 b) \(5^{10} \)