Undirected Graphs

◊ A **simple graph** \(G = (V, E) \) consists of \(V \), a nonempty set of vertices, and \(E \), a set of unordered pairs of distinct elements of \(V \) called edges.

◊ A **multigraph** \(G = (V, E) \) consists of a set \(V \) of vertices, a set \(E \) of edges, and a function \(f \) from \(E \) to \(\{ \{u, v\} \mid u, v \in V, u \neq v \} \). The edges \(e_1 \) and \(e_2 \) are called **multiple** or **parallel edges** if \(f(e_1) = f(e_2) \).

◊ A **pseudograph** \(G = (V, E) \) consists of a set \(V \) of vertices, a set \(E \) of edges, and a function \(f \) from \(E \) to \(\{ \{u, v\} \mid u, v \in V \} \). An edge is a **loop** if \(f(e) = \{u, u\} = \{u\} \) for some \(u \in V \).
A directed graph $G = (V, E)$ consists of a set V of vertices and a set of edges E that are ordered pairs of elements of V.

A directed multigraph $G = (V, E)$ consists of a set V of vertices, a set E of edges, and a function f from E to $\{(u, v) \mid u, v \in V\}$. The edges e_1 and e_2 are multiple edges if $f(e_1) = f(e_2)$.
Undirected Graph Terminology

♦ Two vertices u and v in an undirected graph G are called adjacent (or neighbors) in G if $\{u, v\}$ is an edge of G. If $e = \{u, v\}$, the edge e is called incident with the vertices u and v. The edge e is also said to connect u and v. The vertices u and v are called endpoints of the edges $\{u, v\}$.

♦ The degree of a vertex in an undirected graph is the number of edges incident with it, except that a loop at a vertex contributes twice to the degree of that vertex. The degree of the vertex v is denoted by $\text{deg}(v)$.

♦ The Handshaking Theorem: Let $G = (V, E)$ be an undirected graph with e edges. Then

\[
2e = \sum_{v \in V} \text{deg}(v).
\]

♦ Theorem: An undirected graph has an even number of vertices of odd degree.
Directed Graph Terminology

◊ When \((u, v)\) is an edge of the graph \(G\) with directed edges, \(u\) is said to be **adjacent to** \(v\) and \(v\) is said to be **adjacent from** \(u\). The vertex \(u\) is called the **initial vertex** of \((u, v)\), and \(v\) is called the **terminal** or **end vertex** of \((u, v)\). The initial vertex and terminal vertex of a loop are the same.

◊ In a graph with directed edges the **in-degree** of a vertex \(v\), denoted by \(\text{deg}^- (v)\), is the number of edges with \(v\) as their terminal vertex. The **out-degree** of \(v\), denoted by \(\text{deg}^+ (v)\), is the number of edges with \(v\) as their initial vertex.

◊ **Theorem:** Let \(G = (V, E)\) be a graph with directed edges. Then

\[
\sum_{v \in V} \text{deg}^- (v) = \sum_{v \in V} \text{deg}^+ (v) = |E|.
\]
More Definitions . . .

◊ A simple graph is \(G \) is called **bipartite** if its vertex \(V \) can be partitioned into two disjoint nonempty sets \(V_1 \) and \(V_2 \) such that every edge in the graph connects a vertex in \(V_1 \) and a vertex in \(V_2 \) (so that no edge in \(G \) connects either two vertices in \(V_1 \) or two vertices in \(V_2 \).

◊ A **subgraph** of a graph \(G = (V, E) \) is a graph \(H = (W, F) \) where \(W \subseteq V \) and \(F \subseteq E \).

◊ The **union** of two simple graphs \(G_1 = (V_1, E_1) \) and \(G_2 = (V_2, E_2) \) is the simple graph with vertex set \(V_1 \cup V_2 \) and edge set \(E_1 \cup E_2 \). The union of \(G_1 \) and \(G_2 \) is denoted by \(G_1 \cup G_2 \).

◊ The simple graphs \(G_1 = (V_1, E_1) \) and \(G_2 = (V_2, E_2) \) are **isomorphic** if there is a one-to-one and onto function \(f \) from \(V_1 \) to \(V_2 \) with the property that \(a \) and \(b \) are adjacent in \(G_1 \) if and only if \(f(a) \) and \(f(b) \) are adjacent in \(G_2 \), for all \(a \) and \(b \) in \(V_1 \). Such a function \(f \) is called an **isomorphism**.