Propositional Equivalences

<table>
<thead>
<tr>
<th></th>
<th>Identity laws</th>
<th>Domination laws</th>
<th>Idempotent laws</th>
<th>Double negation law</th>
<th>Commutative laws</th>
<th>Associative laws</th>
<th>Distributive laws</th>
<th>De Morgan’s laws</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p \land T \iff p$</td>
<td>$p \lor F \iff p$</td>
<td>$p \lor T \iff T$</td>
<td>$p \land F \iff F$</td>
<td>$p \lor p \iff p$</td>
<td>$p \land p \iff p$</td>
<td>$\neg(\neg p) \iff p$</td>
<td>$(p \lor q) \land r \iff p \lor (q \land r)$</td>
<td>$(p \land q) \lor r \iff p \land (q \lor r)$</td>
</tr>
<tr>
<td>$p \land q \iff q \lor p$</td>
<td>$p \land q \iff q \land p$</td>
<td>$(p \lor q) \lor r \iff p \lor (q \lor r)$</td>
<td>$(p \land q) \land r \iff p \land (q \land r)$</td>
<td>$p \lor (q \land r) \iff (p \lor q) \land (p \lor r)$</td>
<td>$p \land (q \lor r) \iff (p \land q) \lor (p \land r)$</td>
<td>$\neg(p \land q) \iff \neg p \lor \neg q$</td>
<td>$\neg(p \lor q) \iff \neg p \land \neg q$</td>
<td></td>
</tr>
</tbody>
</table>

Rules of Inference

$\begin{array}{c} p \\ p \lor q \end{array}$	Addition
$\begin{array}{c} p \lor q \\ p \end{array}$	Simplification
$\begin{array}{c} p \land q \\ p \lor q \end{array}$	Conjunction
$\begin{array}{c} p \land q \\ p \lor \neg q \end{array}$	Modus ponens
$\begin{array}{c} p \lor q \\ \neg p \land \neg q \end{array}$	Modus tollens
$\begin{array}{c} p \lor q \\ q \land \neg r \end{array}$	Hypothetical syllogism
$\begin{array}{c} p \lor q \land \neg r \end{array}$	Disjunctive syllogism
$\forall x P(x)$	Universal instantiation
$P(c)$ for an arbitrary $c \in U$	Universal generalization
$\forall x P(x)$	Existential instantiation
$P(c)$ for some $c \in U$	Existential generalization

Sets

- $\mathcal{P}(S)$: The **power set** of S is the set of all subsets of the set S.
- $A \times B$: The **Cartesian product** of A and B is the set of all ordered pairs (a, b) where $a \in A$ and $b \in B$.
- $A_1 \times A_2 \times \ldots \times A_n$: The **Cartesian product** of the sets A_1, A_2, \ldots, A_n is the set of ordered $n-$tuples (a_1, a_2, \ldots, a_n), where a_i belongs to A_i for $i = 1, 2, \ldots, n$.

Functions

- $f : A \rightarrow B$: A **function** from A to B is an assignment of exactly one element of B to each element of A.
- A is the **domain** of f and B is the **codomain** of f.

1
• If \(f(a) = b \), we say that \(b \) is the image of \(a \) and \(a \) is a pre-image of \(b \). The range of \(f \) is the set of all images of elements of \(A \).

• **Injection:** Function \(f \) is said to be one-to-one, if and only if \(f(x) = f(y) \) implies that \(x = y \) for all \(x \) and \(y \) in the domain of \(f \).

• **Surjection:** Function \(f \) is said to be onto / surjective, if and only if for every element \(b \in B \) there is an element \(a \in A \) with \(f(a) = b \).

• **Bijection:** Function \(f \) is a one-to-one correspondence, or bijection, if it is both one-to-one and onto.

• **Inverse function:** Let \(f \) be a one-to-one correspondence from \(A \) to \(B \). The inverse function of \(f \) assigns to an element \(b \) in \(B \) the unique element \(a \) in \(A \) such that \(f(a) = b \). The inverse function of \(f \) is denoted by \(f^{-1} \). Hence, \(f^{-1}(b) = a \) when \(f(a) = b \).

• \(f \circ g : g : A \to B, f : B \to C \). The composition of the functions \(f \) and \(g \) is defined by \((f \circ g)(a) = f(g(a)) \)

Integers

• Let \(a, b, \) and \(c \) be integers, \(a \neq 0 \).

• \(a \mid b \): \(a \) divides \(b \) if there is an integer \(c \) such that \(b = ac \). When \(a \) divides \(b \) we say that \(a \) is a factor of \(b \) and that \(b \) is a multiple of \(a \).

• **Prime:** A positive integer \(p \) greater than 1 is called prime if the only positive factors of \(p \) are 1 and \(p \). A positive integer that is greater than 1 and is not prime is called composite.

• **Fundamental Theorem of Arithmetic:** Every positive integer can be written uniquely as the product of primes, where the prime factors are written in order of increasing size.

• **Division algorithm:** Let \(a \) be an integer and \(d \) a positive integer. Then there are unique integers \(q \) and \(r \), with \(0 \leq r < d \), such that \(a = dq + r \).

• \(\gcd(a, b) \): Let \(a \) and \(b \) be integers, not both zero. The largest integer \(d \) such that \(d \mid a \) and \(d \mid b \) is called the greatest common divisor of \(a \) and \(b \).

• The integers \(a \) and \(b \) are relatively prime if \(\gcd(a, b) = 1 \).

• \(a \equiv b \pmod{m} \) If \(a \) and \(b \) are integers and \(m \) is a positive integer, then \(a \) is congruent to \(b \) modulo \(m \) if \(m \) divides \(a - b \).

• **Theorem 1:** Let \(m \) be a positive integer. The integers \(a \) and \(b \) are congruent modulo \(m \) if and only if there is an integer \(k \) such that \(a = b + km \).

• **Theorem 2:** Let \(m \) be a positive integer. If \(a \equiv b \pmod{m} \) and \(c \equiv d \pmod{m} \), then \(a + c \equiv b + d \pmod{m} \) and \(ac \equiv bd \pmod{m} \).

• **Lemma 1:** Let \(a = bq + r \), where \(a, b, q, \) and \(r \) are integers. Then \(\gcd(a, b) = \gcd(b, r) \).

Counting Principles

• **Pascal’s Identity:** Let \(n \) and \(k \) be positive integers with \(n \geq k \). Then \(C(n + 1, k) = C(n, k - 1) + C(n, k) \)

• **Binomial Theorem:** Let \(x \) and \(y \) be variables, and let \(n \) be a positive integer. Then

\[
(x + y)^n = \sum_{j=0}^{n} C(n, j) x^{n-j} y^j
\]

Probability Theory

• Let \(S \) be the sample space of an experiment with a finite or countable number of outcomes. We assign probability \(p(s) \) to each outcome \(s \). The following two conditions have to be met:

 (i) \(0 \leq p(s) \leq 1 \) for each \(s \in S \)

 (ii) \(\sum_{s \in S} p(s) = 1 \)

• The probability of the event \(E \) is the sum of the probabilities of the outcomes in \(E \). That is, \(p(E) = \sum_{s \in E} p(s) \).
• Let \(E \) and \(F \) be events with \(p(F) > 0 \). The **conditional probability** of \(E \) given \(F \) is defined

\[
p(E \mid F) = \frac{p(E \cap F)}{p(F)}.
\]

• The events \(E \) and \(F \) are said to be **independent** if

\[
p(E \cap F) = p(E)p(F).
\]

Bernoulli Trial: Experiment with only two possible outcomes: success or failure.

Probability of \(k \) successes in \(n \) independent Bernoulli trials with probability of success \(p \) and probability of failure \(q = 1 - p \), is

\[
C(n, k)p^kq^{n-k}.
\]

• A **random variable** is a function from the sample space of an experiment to the set of real numbers.

• The **expected value** (or expectation) of a random variable \(X \)

\[
E(X) = \sum_{s \in S} p(s)X(s).
\]

Theorem 3: If \(X \) and \(Y \) are random variables on a space \(S \), then \(E(X + Y) = E(X) + E(Y) \). Furthermore, if \(X_i, i = 1, 2, \ldots, n \), with \(n \) a positive integer, are random variables on \(S \), and \(X = X_1 + X_2 + \ldots + X_n \), then \(E(X) = E(X_1) + E(X_2) + \ldots + E(X_n) \).

• The random variables \(X \) and \(Y \) on a sample space \(S \) are **independent** if for all real numbers \(r_1 \) and \(r_2 \)

\[
p(X(s) = r_1 \text{ and } Y(s) = r_2) = p(X(s) = r_1)p(Y(s) = r_2).
\]

• **Theorem 4:** If \(X \) and \(Y \) are independent random variables on a space \(S \), then \(E(XY) = E(X)E(Y) \).

• Let \(X \) be random variables on a sample space \(S \). The **variance** of \(X \), denoted by \(V(X) \), is

\[
V(X) = \sum_{s \in S} (X(s) - E(X))^2p(s).
\]

• **Theorem 5:** If \(X \) is a random variable on a space \(S \), then

\[
V(X) = E(X^2) - E(X)^2.
\]

Relations

• Let \(A \) and \(B \) be sets. A **binary relation from \(A \) to \(B \)** is a subset of \(A \times B \). If \((a, b) \in R \), we write \(aRb \) and say \(a \) is related to \(b \) by \(R \).

• Let \(R \) be a relation from a set \(A \) to a set \(B \) and \(S \) be a relation from \(B \) to a set \(C \). The **composite** of \(R \) and \(S \) is the relation consisting of ordered pairs \((a, c) \), where \(a \in A \), \(c \in C \), and for which there exists an element \(b \in B \) such that \((a, b) \in R \) and \((b, c) \in S \). We denote the composite of \(R \) and \(S \) by \(S \circ R \).

• Let \(R \) be a relation on the set \(A \). The **powers** \(R^n \), \(n = 1, 2, 3, \ldots \), are defined inductively by \(R^1 = R \) and \(R^{n+1} = R^n \circ R \).

• Let \(P \) be a property of relations (e.g. transitivity, reflexivity, symmetry). A relation \(S \) is **reflexive** of \(R \) w.r.t. \(P \) if and only if \(S \) has property \(P \), \(S \) contains \(R \), and \(S \) is a subset of every relation with property \(P \) containing \(R \).

• There is a **path** from \(a \) to \(b \) in a relation \(R \) if there is a sequence of elements \(a, x_1, x_2, \ldots x_{n-1}, b \) with \((a, x_1) \in R, (x_1, x_2) \in R, \ldots, (x_{n-1}, b) \in R \).

• **Theorem 6:** Let \(R \) be a relation on a set \(A \). There is a path of length \(n \) from \(a \) to \(b \) if and only if \((a, b) \in R^n \).

• Let \(R \) be a relation on a set \(A \). The **connectivity relation** \(R^* \) consists of pairs \((a, b) \) such that there is a path between \(a \) and \(b \) in \(R \).

• **Theorem 7:** The transitive closure of a relation \(R \) equals the connectivity relation \(R^* \).

A relation on a set \(A \) is called an **equivalence relation** if it is reflexive, symmetric, and transitive. Two elements that are related by an equivalence relation are called equivalent.

Let \(R \) be an equivalence relation on a set \(A \). The set of all elements that are related to an element \(a \) of \(A \) is called the **equivalence class** of \(a \). \([a]_R \): equivalence class of \(a \) w.r.t. \(R \). If \(b \in [a]_R \) then \(b \) is **representative** of this equivalence class.
Theorem 8: Let R be an equivalence relation on a set A. The following statements are equivalent:

1. aRb
2. $[a] = [b]$
3. $[a] \cap [b] \neq \emptyset$

A partition of a set S is a collection of disjoint nonempty subsets $A_i, i \in I$ (where I is an index set) of S that have S as their union: $A_i \neq \emptyset$ for $i \in IA_i \cap A_j = \emptyset$, when $i \neq j\bigcup_{i \in I} A_i = S$

Theorem 9: Let R be an equivalence relation on a set S. Then the equivalence classes of R form a partition of S. Conversely, given a partition $\{A_i \mid i \in I\}$ of the set S, there is an equivalence relation R that has the sets $A_i, i \in I$, as its equivalence classes.

Graphs

- The degree of a vertex in an undirected graph is the number of edges incident with it, except that a loop at a vertex contributes twice to the degree of that vertex. The degree of the vertex v is denoted by $\text{deg}(v)$.
- The Handshaking Theorem: Let $G = (V, E)$ be an undirected graph with e edges. Then $2e = \sum_{v \in V} \text{deg}(v)$.
- Theorem 10: An undirected graph has an even number of vertices of odd degree.
- In a graph with directed edges the in-degree of a vertex v, denoted by $\text{deg}^-(v)$, is the number of edges with v as their terminal vertex. The out-degree of v, denoted by $\text{deg}^+(v)$, is the number of edges with v as their initial vertex.
- Theorem 11: Let $G = (V, E)$ be a graph with directed edges. Then $\sum_{v \in V} \text{deg}^-(v) = \sum_{v \in V} \text{deg}^+(v) = |E|$.
- A simple graph is G is called bipartite if its vertex V can be partitioned into two disjoint nonempty sets V_1 and V_2 such that every edge in the graph connects a vertex in V_1 and a vertex in V_2 (so that no edge in G connects either two vertices in V_1 or two vertices in V_2.
- The simple graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ are isomorphic if there is a one-to-one and onto function f from V_1 to V_2 with the property that a and b are adjacent in G_1 if and only if $f(a)$ and $f(b)$ are adjacent in G_2, for all a and b in V_1. Such a function f is called an isomorphism.