Probability Theory

Let \(S \) be the sample space of an experiment with a finite or countable number of outcomes. We assign probability \(P(\omega) \) to each outcome \(\omega \). The following two conditions have to be met:

(i) For each \(\omega \in S \), \(0 \leq P(\omega) \leq 1 \).
(ii) \(\sum_{\omega \in S} P(\omega) = 1 \).

The probability of the event \(E \) is the sum of the probabilities of the outcomes in \(E \). That is:

\[
\text{The probability of the event } E \text{ is the sum of the probabilities of the outcomes in } E.
\]

\[
\text{Let } E \text{ and } F \text{ be events with } P(F) > 0. \text{ The conditional probability of } E \text{ given } F \text{ is defined as }
\]

\[
P(E | F) = \frac{P(E \cap F)}{P(F)}
\]

The events \(E \) and \(F \) are said to be independent if and only if:

\[
P(E \cap F) = P(E)P(F)
\]

If \(E \) is an event in a sample space \(S \), then:

\[
P(E) = \sum_{\omega \in E} P(\omega)
\]

Let \(E \) and \(F \) be events in a sample space \(S \). Then:

\[
P(E \cup F) = P(E) + P(F) - P(E \cap F)
\]

Theorem: Let \(E \) and \(F \) be events in a sample space \(S \). The conditional probability of the event \(E \) given the event \(F \) is defined by:

\[
P(E | F) = \frac{P(E \cap F)}{P(F)}
\]

The events \(E \) and \(F \) are independent if and only if:

\[
P(E | F) = P(E)
\]

\[
P(F | E) = P(F)
\]

The events \(E \) and \(F \) are independent if and only if:

\[
P(E \cap F) = P(E)P(F)
\]

The events \(E \) and \(F \) are independent if and only if:

\[
P(E | F) = P(E)
\]

\[
P(F | E) = P(F)
\]

The events \(E \) and \(F \) are independent if and only if:

\[
P(E \cap F) = P(E)P(F)
\]

The events \(E \) and \(F \) are independent if and only if:

\[
P(E | F) = P(E)
\]

\[
P(F | E) = P(F)
\]

The events \(E \) and \(F \) are independent if and only if:

\[
P(E \cap F) = P(E)P(F)
\]

The events \(E \) and \(F \) are independent if and only if:

\[
P(E | F) = P(E)
\]

\[
P(F | E) = P(F)
\]
Then \((X + \cdots + Z)A + (Y + \cdots + Z)A + (X + \cdots + Y + \cdots + Z)A \) = \((X + \cdots + Z)A + (X + \cdots + Z)A + (X + \cdots + Z)A \) = \(X + \cdots + Z \)

Then \((X + \cdots + Z)A = X + \cdots + Z \)

Moreover, if \(a \) and \(b \) are real numbers, then \(aA + bA = (a + b)A \) and \(a(\frac{1}{X + \cdots + Z})A = (a + b)A \)

Theorem: \(X \) and \(Y \) are independent random variables on a space \(S \).

The standard deviation of \(X \), denoted \(\sigma_X \), is defined to be \(\sigma_X = \sqrt{\mathbb{E}[(X - \mathbb{E}[X])^2]} \)

The variance of \(X \) is denoted by \(\text{Var}(X) = \mathbb{E}[(X - \mathbb{E}[X])^2] \)

Let \(X \) be random variables on a sample space \(S \). The variance of \(X \) is denoted by \(\text{Var}(X) = \mathbb{E}[(X - \mathbb{E}[X])^2] \)

The random variables \(X \) and \(Y \) on a sample space \(S \) are independent if for all real numbers \(a \) and \(b \):

\(\mathbb{E}[aX + bY] = a\mathbb{E}[X] + b\mathbb{E}[Y] \)

The expected value (or expectation) of a random variable \(X(s) \) on the sample space \(S \) is equal to the set of real numbers:

A random variable is a function from the sample space of an experiment to the set of real numbers.

Random Variables

Independence

Variance

Bernoulli Trial

Bernoulli Trials

Probability of success and probability of failure of Bernoulli trials

Bernoulli Trial: Experiment with only two possible outcomes:

- **Success or failure.**