CSE 312

Foundations of Computing II

Lecture 10: Bloom Filter

Announcements

- PSet 3 due today
- PSet 2 returned yesterday todey
- PSet 4 will be posted today
- Last PSet prior to midterm (midterm is in exactly two weeks from now)
- Midterm info will follow soon
- PSet 5 will only come after the midterm in two weeks
- Midterm feedback/evaluation to come soon (Tomorrow or Friday).

Recap Variance - Properties

Definition. The variance of a (discrete) $\mathrm{RV} X$ is

$$
\left.\operatorname{Var}(X)=\mathbb{E}(X-\mathbb{E}[X])^{2}\right]=\sum_{x} r_{X}(x) \cdot(\underline{x}-\mathbb{E}[X])^{2}
$$

Theorem. For any $a, b \in \mathbb{R}, \operatorname{Var}(\underline{a} \cdot X+b)=\underline{a^{2}} \cdot \operatorname{Var}(X)$

Theorem. $\left.\operatorname{Var}(X)=\underline{\mathbb{E}}\left[x^{2}\right]-\underline{\mathbb{E}[X]}\right]^{2}$

Agenda

- Variance
- Properties of Variance
- Independent Random Variables
- Properties of Independent Random Variables
- An Application: Bloom Filters!

Important Facts about Independent Random Variables

$$
E[X+Y]=E[X]+E[Y]
$$

Theorem. If X, Y independent, $\mathbb{E}[\underline{X \cdot Y}]=\mathbb{E}[X] \cdot \mathbb{E}[Y]$ $\operatorname{Var}(x \cdot Y) \neq 1 ; 1 ;$
Theorem. If X, Y independent, $\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)$

Corollary. If $X_{1}, X_{2}, \ldots, X_{n}$ mutually independent,

$$
\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right)=\sum_{i}^{n} \operatorname{Var}\left(X_{i}\right)
$$

Example - Coin Tosses

We flip n independent coins, each one heads with probability p
$X_{i}= \begin{cases}1, & i^{\text {th }} \text { outcome is heads } \\ 0, & i^{\text {th }} \text { outcome is tails. }\end{cases}$

- (Z) = number of heads

$$
\begin{aligned}
& P\left(X_{i}=1\right)=p \\
& P\left(X_{i}=0\right)=1-p
\end{aligned}
$$

What is $\mathbb{E}[Z]$? What is $\operatorname{Var}(Z)$?

$$
P(Z=k)=\binom{n}{k} p^{k}(1-p)^{n-k}
$$

Note: X_{1}, \ldots, X_{n} are mutually independent! [Verify it formally!]
$\square \operatorname{Var}(Z)=\sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right)=n \cdot p(1-p) \quad \operatorname{Note} \operatorname{Var}\left(X_{i}\right)=p(1-p)$

(Not Covered) Proof of $\mathbb{E}[X \cdot Y]=\mathbb{E}[X] \cdot \mathbb{E}[Y]$

Theorem. If X, Y independent, $\mathbb{E}[X \cdot Y]=\mathbb{E}[X] \cdot \mathbb{E}[Y]$
Proof
Let $x_{i}, \mathrm{y}_{i}, i=1,2, \ldots$ be the possible values of X, Y.
$\mathbb{E}[X \cdot Y]=\sum_{i} \sum_{j} x_{i} \cdot y_{j} \cdot P\left(X=x_{i} \wedge Y=y_{j}\right)$
$=\sum_{i} \sum_{j} x_{i} \cdot y_{i} \cdot P\left(X=x_{i}\right) \cdot P\left(Y=y_{j}\right)$
$=\sum_{i} x_{i} \cdot P\left(X=x_{i}\right) \cdot\left(\sum_{j} y_{j} \cdot P\left(Y=y_{j}\right)\right)$
$=\mathbb{E}[X] \cdot \mathbb{E}[Y]$
Note: NOT true in general; see earlier example $\mathbb{E}\left[\mathrm{X}^{2}\right] \neq \mathbb{E}[\mathrm{X}]^{2}$

(Not Covered) Proof of $\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)$

Theorem. If X, Y independent, $\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)$

$$
\text { Proof } \quad \begin{aligned}
& \operatorname{Var}(X+Y) \\
& =\mathbb{E}\left[(X+Y)^{2}\right]-(\mathbb{E}[X+Y])^{2} \\
& =\mathbb{E}\left[X^{2}+2 X Y+Y^{2}\right]-(\mathbb{E}[X]+\mathbb{E}[Y])^{2} \\
& =\mathbb{E}\left[X^{2}\right]+2 \mathbb{E}[X Y]+\mathbb{E}\left[Y^{2}\right]-\left(\mathbb{E}[X]^{2}+2 \mathbb{E}[X] \mathbb{E}[Y]+\mathbb{E}[Y]^{2}\right) \\
& =\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}+\mathbb{E}\left[Y^{2}\right]-\mathbb{E}[Y]^{2}+2 \mathbb{E}[X Y]-2 \mathbb{E}[X] \mathbb{E}[Y] \\
& =\operatorname{Var}(X)+\operatorname{Var}(Y)+2 \mathbb{E}[X Y]-2 \mathbb{E}[X] \mathbb{E}[Y] \\
& =\operatorname{Var}(X)+\operatorname{Var}(Y)
\end{aligned}
$$

Agenda

- Variance
- Properties of Variance
- Independent Random Variables
- Properties of Independent Random Variables
- An Application: Bloom Filters!

Basic Problem

Problem: Store a subset S of a large set U.
Example. $U=$ set of 128 bit strings
$S=$ subset of strings of interest
$|U| \approx 2^{128}$
$|S| \approx 1000$

Two goals:

1. Very fast (ideally constant time) answers to queries "Is $x \in S$?" for any $x \in U$.
2. Minimal storage requirements.

Naïve Solution I - Constant Time

Idea: Represent S as an array A with 2^{128} entries. $\quad \underline{\mathrm{A}[x]}= \begin{cases}1 & \text { if } x \in S \\ 0 & \text { if } x \notin S\end{cases}$
$S=\{0,2, \ldots, K\}$

0	1	2	\ldots	K	\ldots		
1	0	1	0	1	\ldots	0	0

Membership test: To check. $x \in S$ just check whether $\mathrm{A}[x]=1$.
\rightarrow constant time! ,
Storage: Require storing 2^{128} bits, even for small S.

Naïve Solution II - Small Storage

Idea: Represent S as a list with $|S|$ entries.
$S=\{0,2, \ldots, K\}$

Storage: Grows with $|S|$ only

Membership test: Check $x \in S$ requires time linear in $|S|$
(Can be made logarithmic by using a tree)

Hash Table

Idea: Map elements in S into an array A of size m sing a hash function \mathbf{h}
Membership test: To check $x \in S$ just check whethe $A[\mathbf{h}(x)]=x$
Storage: m elements (size of array)
total $m \times|x|$

hash function $\mathbf{h}: U \rightarrow[m]$

Hash Table

$$
x, y \in S
$$

$$
A[h(x)]=x
$$

$$
h(x)=h(y)
$$

Idea: Map elements in S into an array A of size m using a hash function h
Membership test: To check $x \in S$ just check whether $A[\mathbf{h}(x)]=x$
Storage: m elements (size of array)

Hashing: collisions

Collisions occur when $\boldsymbol{h}(x)=\boldsymbol{h}(y)$ for some distinct $x, y \in S$,
i.e., two elements of set map to the same location

- Common solution: chaining - at each location (bucket) in the table, keep linked list of all elements that hash there.

$$
\binom{|s|}{2} \cdot \frac{1}{|s|}=\frac{|s|(|s|-1)}{2} \cdot \frac{1}{|s|} A
$$

Q: How many collisions in expectation if the table has size $|S|$ and hash function assigns each \otimes to a random position? $\in[\overline{[S \mid}]$ bitthdeys $\in[365]_{16}$

Good hash functions to keep collisions low

- The hash function \boldsymbol{h} is good iff it
- distributes elements uniformly across the m array locations so that
- pairs of elements are mapped independently
"Universal Hash Functions" - see CSE 332

Hashing: summary

Hash Tables

- They store the data itself
- With a good hash function, the data is well distributed in the table and lookup times are small. C. $|S| \times|X|$ In some cases, $|S|$ is huge,
- However, they need at least as much or not known a-priori ... space as all the data being stored, i.e., $m=\Omega(|S|)$

Can we do better!?

Bloom Filters

- Stores information about a set of elements $S \subseteq U$.
- Supports two operations:

1. $\operatorname{add}(x)$ - $\operatorname{adds} x \in U$ to the set S
2. contains (x) - ideally: true if $x \in S$, false otherwise

Combine with fallback mechanism - can distinguish false positives from true positives with extra cost

Bloom Filters - Ingredients

Basic data structure is a $k \times m$ binary array

t_{1}	1	0	1	0	0
t_{2}	0	1	0	0	1
t_{3}	1	0	0	1	0

- k rows t_{1}, \ldots, t_{k}, each of size m
- Think of each row as an m-bit vector
k different hash functions $\mathbf{h}_{1}, \ldots, \mathbf{h}_{k}: U \rightarrow[m]$

Bloom Filters - Three operations

- Set up Bloom filter for $S=\varnothing$

$$
\begin{aligned}
& \text { function } \operatorname{INITIALIZE}(k, m) \\
& \quad \text { for } i=1, \ldots, k \text { do } \\
& \quad t_{i}=\text { new bit vector of } m 0 \mathrm{~s}
\end{aligned}
$$

- Update Bloom filter for $S \leftarrow S \cup\{x\}$

function $\operatorname{ADD}(x)$
for $i=1, \ldots, k: \mathbf{d o}$
$t_{i}\left[h_{i}(x)\right]=1$

- Check if $x \in S$

```
function CONTAINS(x)
    return }\mp@subsup{t}{1}{}[\mp@subsup{h}{1}{}(x)]==1\wedge\mp@subsup{t}{2}{}[\mp@subsup{h}{2}{}(x)]==1\wedge\cdots\wedge\mp@subsup{t}{k}{}[\mp@subsup{h}{k}{}(x)]==
```


Bloom Filters - Initialization

Bloom Filters: Example

Bloom filter \boldsymbol{t} of length $\boldsymbol{m}=5$ that uses $\boldsymbol{k}=3$ hash functions

```
function INITIALIZE(k,m)
    for i=1, .., k: do
        ti
```

Index \rightarrow	0	1	2	3	4
t_{1}	0	0	0	0	0
t_{2}	0	0	0	0	0
t_{3}	0	0	0	0	0

Bloom Filters: Add

function $\operatorname{ADD}(x)$

for $i=1, \ldots, k$: do

$$
t_{i}\left[h_{i}(x)\right]=1
$$

Index into i-th bit-vector, at index produced by hash function and set to 1
for each hash function \mathbf{h}_{i}

Bloom Filters: Example

Bloom filter t of length $\boldsymbol{m}=5$ that uses $\boldsymbol{k}=3$ hash functions
function $\operatorname{ADD}(x)$
for $i=1, \ldots, k$: do
$t_{i}\left[h_{i}(x)\right]=1$

Index \rightarrow	0	1	2	3	4
t_{1}	0	0	0	0	0
t_{2}	0	0	0	0	0
t_{3}	0	0	0	0	0

Bloom Filters: Example

Bloom filter t of length $\boldsymbol{m}=5$ that uses $\boldsymbol{k}=3$ hash functions
function $\operatorname{ADD}(x)$
for $i=1, \ldots, k$: do
$t_{i}\left[h_{i}(x)\right]=1$
add("thisisavirus.com")
h_{1} ("thisisavirus.com") $\rightarrow 2$ h_{2} ("thisisavirus.com") $\rightarrow 1$

Index \rightarrow	0	1	2	3	4
t_{1}	0	0	1	0	0
t_{2}	0	0	0	0	0
t_{3}	0	0	0	0	0

Bloom Filters: Example

Bloom filter t of length $\boldsymbol{m}=5$ that uses $\boldsymbol{k}=3$ hash functions

function $\operatorname{ADD}(x)$
for $i=1, \ldots, k$: do
$t_{i}\left[h_{i}(x)\right]=1$

add("thisisavirus.com")
h_{1} ("thisisavirus.com") $\rightarrow 2$
h_{2} ("thisisavirus.com") $\rightarrow 1$
h_{3} ("thisisavirus.com") $\rightarrow 4$

Index \rightarrow	0	1	2	3	4
t_{1}	0	0	1	0	0
t_{2}	0	1	0	0	0
t_{3}	0	0	0	0	0

Bloom Filters: Example

Bloom filter t of length $\boldsymbol{m}=5$ that uses $\boldsymbol{k}=3$ hash functions

function $\operatorname{ADD}(x)$
for $i=1, \ldots, k$: do
$t_{i}\left[h_{i}(x)\right]=1$

add("thisisavirus.com") h_{1} ("thisisavirus.com") $\rightarrow 2$ h_{2} ("thisisavirus.com") $\rightarrow 1$ h_{3} ("thisisavirus.com") $\rightarrow 4$

Index \rightarrow	0	1	2	3	4
t_{1}	$\boldsymbol{1}$	0	1	0	0
t_{2}	0	$\boldsymbol{1}$	0	0	0
t_{3}	0	0	\underline{b}	0	1

Bloom Filters: Contains

function CONTAINS (x)

$$
\operatorname{return} t_{1}\left[h_{1}(x)\right]==1 \wedge t_{2}\left[h_{2}(x)\right]==1 \wedge \cdots \wedge t_{k}\left[h_{k}(x)\right]==1
$$

Returns True if the bit vector t_{i} for each hash function has bit 1 at index determined by $h_{i}(x)$,
Returns False otherwise

Bloom Filters: Example

Bloom filter t of length $\boldsymbol{m}=5$ that uses $\boldsymbol{k}=3$ hash functions

```
function CONTAINS(x)
    return }\mp@subsup{t}{1}{}[\mp@subsup{h}{1}{}(x)]==1\wedge\mp@subsup{t}{2}{}[\mp@subsup{h}{2}{}(x)]==1\wedge\cdots\wedge\mp@subsup{t}{k}{}[\mp@subsup{h}{k}{}(x)]==
```

Index \rightarrow	0	1	2	3	4
t_{1}	0	0	1	0	0
t_{2}	0	1	0	0	0
t_{3}	0	0	0	0	1

Bloom Filters: Example

Bloom filter t of length $\boldsymbol{m}=5$ that uses $\boldsymbol{k}=3$ hash functions

```
function CONTAINs(x)
    return }\mp@subsup{t}{1}{}[\mp@subsup{h}{1}{}(x)]==1\wedge\mp@subsup{t}{2}{}[\mp@subsup{h}{2}{}(x)]==1\wedge\cdots\wedge\mp@subsup{t}{k}{}[\mp@subsup{h}{k}{}(x)]==
```

True contains("thisisavirus.com")
h_{1} ("thisisavirus.com") $\rightarrow 2$

Index \rightarrow	0	1	2	3	4
t_{1}	0	0	1	0	0
t_{2}	0	1	0	0	0
t_{3}	0	0	0	0	1

Bloom Filters: Example

Bloom filter t of length $\boldsymbol{m}=5$ that uses $\boldsymbol{k}=3$ hash functions

$\begin{aligned} & \text { function } \operatorname{contains}(x) \\ & \quad \text { return } t_{1}\left[h_{1}(x)\right]==1 \wedge t_{2}\left[h_{2}(x)\right]==1 \wedge \cdots \wedge t_{k}\left[h_{k}(x)\right]==1 \end{aligned}$			contains("thisisavirus.com")			
True	True		h_{1} ("thisisa h_{2} ("thisisa			
		0	- 1	2	3	4
		0	0	1	0	0
		0	01	0	0	0
		0	0	0	0	1

Bloom Filters: Example

Bloom filter t of length $\boldsymbol{m}=5$ that uses $\boldsymbol{k}=3$ hash functions

Bloom Filters: Example

Bloom filter t of length $\boldsymbol{m}=5$ that uses $\boldsymbol{k}=3$ hash functions

```function CONTAINS(x) return }\mp@subsup{t}{1}{}[\mp@subsup{h}{1}{}(x)]==1\wedge\mp@subsup{t}{2}{}[\mp@subsup{h}{2}{}(x)]==1\wedge\cdots\wedge\mp@subsup{t}{k}{}[\mp@subsup{h}{k}{}(x)]==```			contains("thisisavirus.com")			
True True	True		$\begin{aligned} & h_{1}(\text { ("thisisavirus.com") } \rightarrow 2 \\ & h_{2}(\text { (thisisavirus.com") } \rightarrow 1 \\ & h_{3}(\text { (thisisavirus.com") } \rightarrow 4 \end{aligned}$			
	Index	0	1	2	3	4
Since all conditions satisfied, returns True (correctly)						
	$\mathrm{t}_{2}$	0	1	0	0	0
	$\mathrm{t}_{3}$	0	0	0	0	1

## Bloom Filters: False Positives

Bloom filter t of length $\boldsymbol{m}=5$ that uses $\boldsymbol{k}=3$ hash functions
function $\operatorname{ADD}(x)$
for $i=1, \ldots, k$ : do
$t_{i}\left[h_{i}(x)\right]=1$
add("totallynotsuspicious.com")

Index   $\rightarrow$	0	1	2	3	4
$t_{1}$	0	0	1	0	0
$t_{2}$	0	1	0	0	0
$t_{3}$	0	0	0	0	1

## Bloom Filters: False Positives

Bloom filter t of length $\boldsymbol{m}=5$ that uses $\boldsymbol{k}=3$ hash functions

function $\operatorname{ADD}(x)$
for $i=1, \ldots, k$ : do
$t_{i}\left[h_{i}(x)\right]=1$

add("totallvnotsuspicious.com") $h_{1}$ ("totallynotsuspicious.com") $\rightarrow 1$

Index   $\rightarrow$	0	1	2	3	4
$t_{1}$	0	0	1	0	0
$t_{2}$	0	1	0	0	0
$t_{3}$	0	0	0	0	1

## Bloom Filters: False Positives

Bloom filter t of length $\boldsymbol{m}=5$ that uses $\boldsymbol{k}=3$ hash functions

function $\operatorname{ADD}(x)$
for $i=1, \ldots, k$ : do
$t_{i}\left[h_{i}(x)\right]=1$

add("totallvnotsuspicious.com") $h_{1}$ ("totallynotsuspicious.com") $\rightarrow 1$ $h_{2}$ ("totallynotsuspicious.com") $\rightarrow 0$

Index   $\rightarrow$	0	1	2	3	4
$t_{1}$	0	1	1	0	0
$t_{2}$	0	1	0	0	0
$t_{3}$	0	0	0	0	1

## Bloom Filters: False Positives

Bloom filter t of length $\boldsymbol{m}=5$ that uses $\boldsymbol{k}=3$ hash functions
function $\operatorname{ADD}(x)$
for $i=1, \ldots, k$ do
$t_{i}\left[h_{i}(x)\right]=1$
add("totallvnotsuspicious.com") $h_{1}$ ("totallynotsuspicious.com") $\rightarrow 1$ $h_{2}$ ("totallynotsuspicious.com") $\rightarrow 0$ $h_{3}$ ("totallynotsuspicious.com") $\rightarrow 4$

Index   $\rightarrow$	0	1	2	3	4
$t_{1}$	0	1	1	0	0
$t_{2}$	1	1	0	0	0
$t_{3}$	0	0	0	0	1

## Bloom Filters: False Positives

Bloom filter t of length $\boldsymbol{m}=5$ that uses $\boldsymbol{k}=3$ hash functions

function $\operatorname{ADD}(x)$
for $i=1, \ldots, k$ do
$t_{i}\left[h_{i}(x)\right]=1$

add("totallvnotsuspicious.com")
for $i=1, \ldots, k$ : do
$t_{i}\left[h_{i}(x)\right]=1$


Index   $\rightarrow$	0	1	2	3	4
$t_{1}$	0	1	1	0	0
$t_{2}$	1	1	0	0	0
$t_{3}$	0	0	0	0	1

## Bloom Filters: False Positives

Bloom filter t of length $\boldsymbol{m}=5$ that uses $\boldsymbol{k}=3$ hash functions

```
function CONTAINS(x)
 return }\mp@subsup{t}{1}{}[\mp@subsup{h}{1}{}(x)]==1\wedge\mp@subsup{t}{2}{}[\mp@subsup{h}{2}{}(x)]==1\wedge\cdots\wedge\mp@subsup{t}{k}{}[\mp@subsup{h}{k}{}(x)]==
```

Index   $\rightarrow$	0	1	2	3	4
$t_{1}$	0	$\underline{1}$	1	0	0
$t_{2}$	1	1	0	0	0
$t_{3}$	0	0	0	0	1

## Bloom Filters: False Positives

Bloom filter t of length $\boldsymbol{m}=5$ that uses $\boldsymbol{k}=3$ hash functions

```
function CONTAINs(x)
 return }\mp@subsup{t}{1}{}[\mp@subsup{h}{1}{}(x)]==1\wedge\mp@subsup{t}{2}{}[\mp@subsup{h}{2}{}(x)]==1\wedge\cdots\wedge\mp@subsup{t}{k}{}[\mp@subsup{h}{k}{}(x)]==
```

    True
    contains("verynormalsite.com")
$h_{1}$ ("verynormalsite.com") $\rightarrow 2$

Index   $\rightarrow$	0	1	2	3	4
$t_{1}$	0	1	1	0	0
$t_{2}$	1	1	0	0	0
$t_{3}$	0	0	0	0	1

## Bloom Filters: False Positives

Bloom filter t of length $\boldsymbol{m}=5$ that uses $\boldsymbol{k}=3$ hash functions

```
function CONTAINS(x)
 return }\mp@subsup{t}{1}{}[\mp@subsup{h}{1}{}(x)]==1\wedge\mp@subsup{t}{2}{}[\mp@subsup{h}{2}{}(x)]==1\wedge\cdots\wedge\mp@subsup{t}{k}{}[\mp@subsup{h}{k}{}(x)]==
 True True
 contains("verynormalsite.com")
 hin("verynormalsite.com") }->
 h2("verynormalsite.com") }->
```

Index   $\rightarrow$	0	1	2	3	4
$t_{1}$	0	1	1	0	0
$t_{2}$	1	1	0	0	0
$t_{3}$	0	0	0	0	1

## Bloom Filters: False Positives

Bloom filter t of length $\boldsymbol{m}=5$ that uses $\boldsymbol{k}=3$ hash functions

```function \(\operatorname{CONTAINS}(x)\) return \(t_{1}\left[h_{1}(x)\right]==1 \wedge t_{2}\left[h_{2}(x)\right]==1 \wedge \cdots \wedge t_{k}\left[h_{k}(x)\right]==1\)```			contains(verynormalsite.com")			
True True	True		ynno			0 0 0
	Index \rightarrow	0	1	2	3	4
	t_{1}	0	1	(1)	0	0
	t_{2}	(1).	1	0	0	0
	t_{3}	0	0	0	0	(1)

Bloom Filters: False Positives

Bloom filter t of length $\boldsymbol{m}=5$ that uses $\boldsymbol{k}=3$ hash functions

Analysis: False positive probability

Question: For an element $x \in U$, what is the probability that contains (x) returns true if $\operatorname{add}(x)$ was never executed before?

Probability over what?! Over the choice of the $\boldsymbol{h}_{1}, \ldots, \boldsymbol{h}_{k}$
Assumptions for the analysis (somewhat stronger than for ordinary hashing):

- Each $\mathbf{h}_{i}(x)$ is uniformly distributed in $[m]$ for all x and i
- Hash function outputs for each \mathbf{h}_{i} are mutually independent (not just in pairs)
- Different hash functions are independent of each other

False positive probability - Events

Assume we perform $\operatorname{add}\left(x_{1}\right), \ldots, \operatorname{add}\left(x_{n}\right)$

$$
+\operatorname{contains}(x) \text { for } x \notin\left\{x_{1}, \ldots, x_{n}\right\}
$$

Event E_{i} holds iff $\mathbf{h}_{i}(x) \in\left\{\mathbf{h}_{i}\left(x_{1}\right), \ldots, \mathbf{h}_{i}\left(x_{n}\right)\right\}$

$$
\begin{array}{cl}
P(\text { false positive })= & P\left(E_{1} \cap E_{2} \cap \cdots \cap E_{k}\right)=\prod_{i=1}^{k} P\left(E_{i}\right) \\
\mathbf{h}_{1}, \ldots, \mathbf{h}_{k} \text { independent }
\end{array}
$$

False positive probability - Events

Event E_{i} holds iff $\mathbf{h}_{i}(x) \in\left\{\mathbf{h}_{i}\left(x_{1}\right), \ldots, \mathbf{h}_{i}\left(x_{n}\right)\right\}$
Event E_{i}^{C} holds iff $\mathbf{h}_{i}(x) \neq \mathbf{h}_{i}\left(x_{1}\right)$ and \ldots and $\mathbf{h}_{i}(x) \neq \mathbf{h}_{i}\left(x_{n}\right)$

$$
P\left(E_{i}^{c}\right)=\sum_{z=1}^{m} P\left(\mathbf{h}_{i}(x)=z\right) \cdot P\left(E_{i}^{c} \mid \mathbf{h}_{i}(x)=\mathrm{z}\right)
$$

LTP

False positive probability - Events

$$
\begin{gathered}
\qquad P\left(E_{i}^{c} \mid \mathbf{h}_{i}(x)=z\right)=P\left(\mathbf{h}_{i}\left(x_{1}\right) \neq z, \ldots, \mathbf{h}_{i}\left(x_{n}\right) \neq z \mid \mathbf{h}_{i}(x)=z\right) \\
\begin{array}{l}
\text { Independence of values } \\
\text { of } \boldsymbol{h}_{i} \text { on different inputs }
\end{array} \\
\xrightarrow{\text { Outputs of } \boldsymbol{h}_{i} \text { uniformly spread }}=\prod_{j=1}^{n} P\left(\mathbf{h}_{i}\left(x_{1}\right) \neq z, \ldots, \mathbf{h}_{i}\left(x_{n}\right) \neq z\right) \\
\\
\\
P\left(E_{i}^{c}\right)=\prod_{j=1}^{n}\left(1-\frac{1}{m}\right)=\left(1-\frac{1}{m}\right)^{n} \\
\end{gathered}
$$

$$
\text { and } \mathbf{h}_{i}(x) \neq \mathbf{h}_{i}\left(x_{n}\right)
$$

False positive probability - Events

Event E_{i} holds iff $\mathbf{h}_{i}(x) \in\left\{\mathbf{h}_{i}\left(x_{1}\right), \ldots, \mathbf{h}_{i}\left(x_{n}\right)\right\}$
Event E_{i}^{c} holds iff $\mathbf{h}_{i}(x) \neq \mathbf{h}_{i}\left(x_{1}\right)$ and \ldots and $\mathbf{h}_{i}(x) \neq \mathbf{h}_{i}\left(x_{n}\right)$

$$
\begin{aligned}
& P\left(E_{i}^{c}\right)=\left(1-\frac{1}{m}\right)^{n} \\
& \square \mathrm{FPR}=\prod_{i=1}^{k}\left(1-P\left(E_{i}^{c}\right)\right)=\left(1-\left(1-\frac{1}{m}\right)^{n}\right)^{k}
\end{aligned}
$$

False Positivity Rate_- Example

$$
\operatorname{FPR}=\left(1-\left(1-\frac{1}{m}\right)^{n}\right)^{k}
$$

$$
\text { e.g., } \begin{aligned}
n & =5,000,000 \\
k & =30 \\
m & =2,500,000
\end{aligned}
$$

$$
F P R=1.28 \%
$$

Comparison with Hash Tables - Space

- Google storing 5 million URLs, each URL 40 bytes.
- Bloom filter with $k=30$ and $m=2,500,000$

```
Hash Table
(optimistic)
5,000,000 <40B=200MB
```


Bloom Filter

$2,500,000 \times 30=75,000,000$ bits
$<10 \mathrm{MB}$

Time

- Say avg user visits 102,000 URLs in a year, of which 2,000 are malicious.
- 0.5 seconds to do lookup in the database, 1 ms for lookup in Bloom filter.
- Suppose the false positive rate is 3% false positives

Bloom filter lookup

Bloom Filters typical of....
... randomized algorithms and randomized data structures.

- Simple
- Fast
- Efficient
- Elegant
- Useful!

