
CSE 312

Foundations of Computing II
Lecture 10: Bloom Filter
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Announcements

• PSet 3 due today
• PSet 2 returned yesterday
• PSet 4 will be posted today
– Last PSet prior to midterm (midterm is in exactly two weeks from 

now)
– Midterm info will follow soon
– PSet 5 will only come after the midterm in two weeks  

• Midterm feedback/evaluation to come soon (Tomorrow or 
Friday). 
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Recap Variance – Properties 
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Definition. The variance of a (discrete) RV 𝑋	is

 Var 𝑋 = 𝔼 𝑋 − 𝔼[𝑋] ! = ∑" 𝑝# 𝑥 ⋅ 𝑥 − 𝔼[𝑋] !

Theorem. Var 𝑋 = 𝔼[𝑋!] − 𝔼[𝑋]!

Theorem. For any 𝑎, 𝑏 ∈ ℝ, Var 𝑎 ⋅ 𝑋 + 𝑏 = 𝑎! ⋅ Var 𝑋



Agenda

• Variance
• Properties of Variance
• Independent Random Variables
• Properties of Independent Random Variables
• An Application:  Bloom Filters!
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Important Facts about Independent Random Variables
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Theorem. If 𝑋, 𝑌 independent, 𝔼[𝑋 ⋅ 𝑌] = 𝔼[𝑋] ⋅ 𝔼[𝑌]

Theorem. If 𝑋, 𝑌 independent, Var 𝑋 + 𝑌 = Var 𝑋 + Var 𝑌

Corollary. If 𝑋$, 𝑋!, …, 𝑋% mutually independent, 

Var 6
&'$

%

𝑋& =6
&

%

Var(𝑋&)



Example – Coin  Tosses
We flip 𝑛 independent coins, each one heads with probability 𝑝

- 𝑋& = :1, 𝑖
th	outcome	is	heads

0, 𝑖th	outcome	is	tails.	
- 𝑍 = number of heads

What is 𝔼[𝑍]?    What is Var(𝑍)?
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𝑃 𝑋! = 1 = 𝑝 
𝑃 𝑋! = 0 = 1 − 𝑝 

𝑃 𝑍 = 𝑘 = "
# 𝑝

# 1 − 𝑝 "$#  

Fact. 𝑍 = ∑&'$% 𝑋&  

Note: 𝑋$, … , 𝑋% are mutually independent! [Verify it formally!]

Var 𝑍 =6
&'$

%

Var 𝑋& = 𝑛 ⋅ 𝑝(1 − 𝑝) Note Var 𝑋! = 𝑝(1 − 𝑝)



(Not Covered) Proof of 𝔼[𝑋 ⋅ 𝑌] = 𝔼[𝑋] ⋅ 𝔼[𝑌]
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Theorem. If 𝑋, 𝑌 independent, 𝔼[𝑋 ⋅ 𝑌] = 𝔼[𝑋] ⋅ 𝔼[𝑌]

Proof Let 𝑥! , y! , 𝑖 = 1, 2,…be the possible values of 𝑋, 𝑌.

𝔼 𝑋 ⋅ 𝑌 =.
!

.
"

𝑥! ⋅ 𝑦" ⋅ 𝑃(𝑋 = 𝑥! ∧ 𝑌 = 𝑦")

=.
!

.
"

𝑥! ⋅ 𝑦! ⋅ 𝑃 𝑋 = 𝑥! ⋅ 𝑃(𝑌 = 𝑦")

=.
!

𝑥! ⋅ 𝑃 𝑋 = 𝑥! ⋅ .
"

𝑦" ⋅ 𝑃(𝑌 = 𝑦")

= 𝔼 𝑋 ⋅ 𝔼[𝑌]

Note: NOT true in general; see earlier example 𝔼[X2]≠𝔼[X]2

independence



(Not Covered) Proof of Var 𝑋 + 𝑌 = Var 𝑋 + Var 𝑌
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Proof

Theorem. If 𝑋, 𝑌 independent, Var 𝑋 + 𝑌 = Var 𝑋 + Var 𝑌

𝑉𝑎𝑟 𝑋 + 𝑌    

= 𝔼 𝑋 + 𝑌 % − 𝔼 𝑋 + 𝑌 % 

= 𝔼 𝑋% + 2𝑋𝑌 + 𝑌% − 𝔼 𝑋 + 𝔼 𝑌 % 

= 𝔼 𝑋% + 2	𝔼 𝑋𝑌 + 𝔼 𝑌% − 𝔼 𝑋 % + 2	𝔼 𝑋 	𝔼 𝑌 + 𝔼 𝑌 %  
 

= 𝔼 𝑋% − 𝔼 𝑋 % + 𝔼 𝑌% − 𝔼 𝑌 % + 2	𝔼 𝑋𝑌 − 2	𝔼 𝑋 	𝔼 𝑌   

= 𝑉𝑎𝑟 𝑋 + 𝑉𝑎𝑟 𝑌 + 2	𝔼 𝑋𝑌 − 2	𝔼 𝑋 	𝔼 𝑌       

= 𝑉𝑎𝑟(𝑋) + 𝑉𝑎𝑟 𝑌  equal by independence

linearity
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Agenda

• Variance
• Properties of Variance
• Independent Random Variables
• Properties of Independent Random Variables
• An Application:  Bloom Filters!
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Basic Problem
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Problem: Store a subset 𝑆 of a large set 𝑈.

Example. 𝑈 = set of 128 bit strings
𝑆 = subset of strings of interest

𝑈 ≈ 2128

𝑆 ≈ 1000

Two goals: 
1. Very fast (ideally constant time) answers to queries “Is 𝑥 ∈ 𝑆?” 

for any 𝑥 ∈ 𝑈.
2. Minimal storage requirements.



Naïve Solution I – Constant Time
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Idea: Represent 𝑆	as an array A with 2128 entries.

𝟎 𝟏 𝟐 … 𝑲 …

𝟏 𝟎 𝟏 𝟎 𝟏 … 𝟎 𝟎

A 𝑥 = :1	 if	𝑥 ∈ 𝑆0	 if	𝑥 ∉ 𝑆

Membership test: To check.𝑥 ∈ 𝑆 just check whether A 𝑥 = 1.

Storage: Require storing 2128  bits, even for small 𝑆.

👍 😀→ constant time!

👎 😢

𝑆 = {0,2, … , K}



Naïve Solution II – Small Storage

13

Idea: Represent 𝑆	as a list with |𝑆| entries.

0 2 … K

Storage: Grows with |𝑆| only 👍 😀

Membership test: Check	𝑥 ∈ 𝑆 requires time linear in |𝑆| 
(Can be made logarithmic by using a tree) 👎 😢

𝑆 = {0,2, … , K}



Hash Table
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Idea: Map elements in 𝑆	into an array 𝐴 of size 𝑚	using a hash function 𝐡

hash function 𝐡: 𝑈 → [𝑚]

1
2 3

4 5
K-1

K

1

2
3

4
5

Membership test: To check 𝑥 ∈ 𝑆 just check whether 𝐴 𝐡(𝑥) = 𝑥

Storage: 𝑚 elements (size of array)



Hash Table
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Idea: Map elements in 𝑆	into an array 𝐴 of size 𝑚	using a hash function 𝐡

Membership test: To check 𝑥 ∈ 𝑆 just check whether 𝐴 𝐡(𝑥) = 𝑥

Storage: 𝑚 elements (size of array)

Challenge 2: Ensure
 𝑚 = 𝑂( 𝑆 )

Challenge 1: Ensure 
𝒉 𝑥 ≠ 𝒉 𝑦  for 
most 𝑥, 𝑦 ∈ 𝑆	



Hashing: collisions

Collisions occur when 𝒉 𝑥 = 𝒉 𝑦  for some distinct 𝑥, 𝑦 ∈ 𝑆, 
i.e., two elements of set map to the same location

• Common solution: chaining – at each 
location (bucket) in the table, keep 
linked list of all elements that hash there.

Q: How many collisions in expectation if the table has size |S| 
and hash function assigns each x to a random position?
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1 2 3 4 5 𝑚…

𝑥!

𝑥"

𝑥#

𝒉 𝑥!	 = 𝒉 𝑥"  



Good hash functions to keep collisions low

• The hash function 𝒉 is good iff it
– distributes elements uniformly across the 𝑚 array locations so that 
– pairs of elements are mapped independently

“Universal Hash Functions” – see CSE 332
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Hashing: summary
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Hash Tables

• They store the data itself
• With a good hash function, the data 

is well distributed in the table and 
lookup times are small.

• However, they need at least as much 
space as all the data being stored, 
i.e., 𝑚 = Ω( 𝑆 )

Can we do 
better!?

In some cases, 𝑆  is huge, 
or not known a-priori … 



Bloom Filters

to the rescue
(Named after Burton Howard Bloom)

This Photo by Unknown Author is licensed under CC BY-NC-ND

http://blog.bubbasgarage.com/2019/04/photos-from-biltmore-blooms.html
https://creativecommons.org/licenses/by-nc-nd/3.0/


Bloom Filters

• Stores information about a set of elements 𝑆 ⊆ 𝑈.
• Supports two operations:

1. add(𝑥)	- adds 𝑥 ∈ 𝑈 to the set 𝑆 
2. contains(𝑥) – ideally: true if 𝑥 ∈ 𝑆, false otherwise
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Possible false positives
Combine with fallback mechanism – can distinguish false 
positives from true positives with extra cost



Bloom Filters – Ingredients 
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Basic data structure is a 𝑘×𝑚 binary array 
“the Bloom filter”
• 𝑘 rows 𝑡N, … , 𝑡O, each of size 𝑚
• Think of each row as an 𝑚-bit vector

𝑘 different hash functions 𝐡N, … , 𝐡O: 𝑈 → [𝑚]  

t1 1 0 1 0 0

t2 0 1 0 0 1

t3 1 0 0 1 0



Bloom Filters – Three operations

• Set up Bloom filter for 𝑆 = ∅

• Update Bloom filter for  𝑆 ← 𝑆 ∪ {𝑥}

• Check if 𝑥 ∈ 𝑆
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function INITIALIZE(𝑘,𝑚)
       for 𝑖 = 1,… , 𝑘: do
              𝑡& = new bit vector of 𝑚 0s

function ADD(𝑥)
       for 𝑖 = 1,… , 𝑘: do
             𝑡&[ℎ& 𝑥 ] = 1

function CONTAINS(𝑥)
       return 𝑡! ℎ! 𝑥 == 1 ∧ 𝑡# ℎ# 𝑥 == 1 ∧ ⋯∧ 𝑡$ ℎ$ 𝑥 == 1



function INITIALIZE(𝑘,𝑚)
       for 𝑖 = 1,… , 𝑘: do
              𝑡! = new bit vector of 𝑚 0s

Size of array 
associated to 
each hash 
function. 

Number of 
hash 
functions

for each hash 
function, initialize 
an empty bit 
vector of size 𝑚

Bloom Filters - Initialization



Index 
→ 

0 1 2 3 4

t1 0 0 0 0 0

t2 0 0 0 0 0

t3 0 0 0 0 0

Bloom Filters: Example

function INITIALIZE(𝑘,𝑚)
       for 𝑖 = 1,… , 𝑘: do
              𝑡& = new bit vector of 𝑚 0s

Bloom filter 𝒕 of length 𝒎 = 5 that uses 𝒌 = 3 hash functions



function ADD(𝑥)
       for 𝑖 = 1,… , 𝑘: do
             𝑡![ℎ! 𝑥 ] = 1

for each hash 
function 𝐡𝑖

Index into 𝑖-th bit-vector, at index produced 
by hash function and set to 1

𝐡𝑖(𝑥) → result of hash 
function 𝐡𝑖 on 𝑥

Bloom Filters: Add



Bloom filter t of length 𝒎 = 5 that uses 𝒌 = 3 hash functions

Bloom Filters: Example

function ADD(𝑥)
       for 𝑖 = 1,… , 𝑘: do
             𝑡T[ℎT 𝑥 ] = 1

Index 
→ 

0 1 2 3 4

t1 0 0 0 0 0

t2 0 0 0 0 0

t3 0 0 0 0 0

add(“thisisavirus.com”)
ℎ1(“thisisavirus.com”) → 2 



Bloom Filters: Example

function ADD(𝑥)
       for 𝑖 = 1,… , 𝑘: do
             𝑡T[ℎT 𝑥 ] = 1

Index 
→ 

0 1 2 3 4

t1 0 0 1 0 0

t2 0 0 0 0 0

t3 0 0 0 0 0

Bloom filter t of length 𝒎 = 5 that uses 𝒌 = 3 hash functions

ℎ2(“thisisavirus.com”) → 1 
ℎ1(“thisisavirus.com”) → 2 

add(“thisisavirus.com”)



add(“thisisavirus.com”)

ℎ2(“thisisavirus.com”) → 1 
ℎ3(“thisisavirus.com”) → 4 

Bloom Filters: Example

function ADD(𝑥)
       for 𝑖 = 1,… , 𝑘: do
             𝑡T[ℎT 𝑥 ] = 1

Index 
→ 

0 1 2 3 4

t1 0 0 1 0 0

t2 0 1 0 0 0

t3 0 0 0 0 0

ℎ1(“thisisavirus.com”) → 2 

Bloom filter t of length 𝒎 = 5 that uses 𝒌 = 3 hash functions



Bloom filter t of length 𝒎 = 5 that uses 𝒌 = 3 hash functions

Bloom Filters: Example

function ADD(𝑥)
       for 𝑖 = 1,… , 𝑘: do
             𝑡T[ℎT 𝑥 ] = 1

Index 
→ 

0 1 2 3 4

t1 0 0 1 0 0

t2 0 1 0 0 0

t3 0 0 0 0 1

add(“thisisavirus.com”)

ℎ2(“thisisavirus.com”) → 1 
ℎ1(“thisisavirus.com”) → 2 

ℎ3(“thisisavirus.com”) → 4 



Returns True if the bit vector 𝑡𝑖 for each hash function has bit 1 at 
index determined by ℎ𝑖(𝑥), 

Returns False otherwise

Bloom Filters: Contains

function CONTAINS(𝑥)
       return 𝑡$ ℎ$ 𝑥 == 1 ∧ 𝑡! ℎ! 𝑥 == 1 ∧ ⋯∧ 𝑡7 ℎ7 𝑥 == 1



contains(“thisisavirus.com”)

Bloom Filters: Example

function CONTAINS(𝑥)
        return 𝑡! ℎ! 𝑥 == 1 ∧ 𝑡" ℎ" 𝑥 == 1 ∧⋯∧ 𝑡# ℎ# 𝑥 == 1

Index 
→ 

0 1 2 3 4

t1 0 0 1 0 0

t2 0 1 0 0 0

t3 0 0 0 0 1

Bloom filter t of length 𝒎 = 5 that uses 𝒌 = 3 hash functions



contains(“thisisavirus.com”)

True

Bloom Filters: Example

function CONTAINS(𝑥)
        return 𝑡! ℎ! 𝑥 == 1 ∧ 𝑡" ℎ" 𝑥 == 1 ∧⋯∧ 𝑡# ℎ# 𝑥 == 1

Index 
→ 

0 1 2 3 4

t1 0 0 1 0 0

t2 0 1 0 0 0

t3 0 0 0 0 1

Bloom filter t of length 𝒎 = 5 that uses 𝒌 = 3 hash functions

ℎ1(“thisisavirus.com”) → 2 



contains(“thisisavirus.com”)

TrueTrue

Bloom Filters: Example

function CONTAINS(𝑥)
        return 𝑡! ℎ! 𝑥 == 1 ∧ 𝑡" ℎ" 𝑥 == 1 ∧⋯∧ 𝑡# ℎ# 𝑥 == 1

Index 
→ 

0 1 2 3 4

t1 0 0 1 0 0

t2 0 1 0 0 0

t3 0 0 0 0 1

Bloom filter t of length 𝒎 = 5 that uses 𝒌 = 3 hash functions

ℎ2(“thisisavirus.com”) → 1 
ℎ1(“thisisavirus.com”) → 2 



contains(“thisisavirus.com”)

TrueTrueTrue

Bloom Filters: Example

function CONTAINS(𝑥)
        return 𝑡! ℎ! 𝑥 == 1 ∧ 𝑡" ℎ" 𝑥 == 1 ∧⋯∧ 𝑡# ℎ# 𝑥 == 1

Index 
→ 

0 1 2 3 4

t1 0 0 1 0 0

t2 0 1 0 0 0

t3 0 0 0 0 1

Bloom filter t of length 𝒎 = 5 that uses 𝒌 = 3 hash functions

ℎ2(“thisisavirus.com”) → 1 
ℎ1(“thisisavirus.com”) → 2 

ℎ3(“thisisavirus.com”) → 4 



contains(“thisisavirus.com”)

TrueTrueTrue

Bloom Filters: Example

function CONTAINS(𝑥)
        return 𝑡! ℎ! 𝑥 == 1 ∧ 𝑡" ℎ" 𝑥 == 1 ∧⋯∧ 𝑡# ℎ# 𝑥 == 1

Index 
→ 

0 1 2 3 4

t1 0 0 1 0 0

t2 0 1 0 0 0

t3 0 0 0 0 1

Since all conditions satisfied, returns True (correctly)

Bloom filter t of length 𝒎 = 5 that uses 𝒌 = 3 hash functions

ℎ2(“thisisavirus.com”) → 1 
ℎ1(“thisisavirus.com”) → 2 

ℎ3(“thisisavirus.com”) → 4 



Index 
→ 

0 1 2 3 4

t1 0 0 1 0 0

t2 0 1 0 0 0

t3 0 0 0 0 1

Bloom Filters: False Positives

function ADD(𝑥)
       for 𝑖 = 1,… , 𝑘: do
             𝑡T[ℎT 𝑥 ] = 1

Bloom filter t of length 𝒎 = 5 that uses 𝒌 = 3 hash functions

add(“totallynotsuspicious.com”)



Index 
→ 

0 1 2 3 4

t1 0 0 1 0 0

t2 0 1 0 0 0

t3 0 0 0 0 1

Bloom Filters: False Positives

function ADD(𝑥)
       for 𝑖 = 1,… , 𝑘: do
             𝑡T[ℎT 𝑥 ] = 1

Bloom filter t of length 𝒎 = 5 that uses 𝒌 = 3 hash functions

add(“totallynotsuspicious.com”)
ℎ1(“totallynotsuspicious.com”) → 1 



Index 
→ 

0 1 2 3 4

t1 0 1 1 0 0

t2 0 1 0 0 0

t3 0 0 0 0 1

Bloom Filters: False Positives

function ADD(𝑥)
       for 𝑖 = 1,… , 𝑘: do
             𝑡T[ℎT 𝑥 ] = 1

Bloom filter t of length 𝒎 = 5 that uses 𝒌 = 3 hash functions

add(“totallynotsuspicious.com”)

ℎ2(“totallynotsuspicious.com”) → 0 
ℎ1(“totallynotsuspicious.com”) → 1 



Index 
→ 

0 1 2 3 4

t1 0 1 1 0 0

t2 1 1 0 0 0

t3 0 0 0 0 1

Bloom Filters: False Positives

function ADD(𝑥)
       for 𝑖 = 1,… , 𝑘: do
             𝑡T[ℎT 𝑥 ] = 1

Bloom filter t of length 𝒎 = 5 that uses 𝒌 = 3 hash functions

add(“totallynotsuspicious.com”)

ℎ2(“totallynotsuspicious.com”) → 0 
ℎ1(“totallynotsuspicious.com”) → 1 

ℎ3(“totallynotsuspicious.com”) → 4 



Index 
→ 

0 1 2 3 4

t1 0 1 1 0 0

t2 1 1 0 0 0

t3 0 0 0 0 1

Bloom Filters: False Positives

function ADD(𝑥)
       for 𝑖 = 1,… , 𝑘: do
             𝑡T[ℎT 𝑥 ] = 1

Bloom filter t of length 𝒎 = 5 that uses 𝒌 = 3 hash functions

add(“totallynotsuspicious.com”)

ℎ2(“totallynotsuspicious.com”) → 0 
ℎ1(“totallynotsuspicious.com”) → 1 

ℎ3(“totallynotsuspicious.com”) → 4 



Index 
→ 

0 1 2 3 4

t1 0 1 1 0 0

t2 1 1 0 0 0

t3 0 0 0 0 1

contains(“verynormalsite.com”)

Bloom Filters: False Positives

function CONTAINS(𝑥)
        return 𝑡! ℎ! 𝑥 == 1 ∧ 𝑡" ℎ" 𝑥 == 1 ∧⋯∧ 𝑡# ℎ# 𝑥 == 1

Bloom filter t of length 𝒎 = 5 that uses 𝒌 = 3 hash functions



Index 
→ 

0 1 2 3 4

t1 0 1 1 0 0

t2 1 1 0 0 0

t3 0 0 0 0 1

contains(“verynormalsite.com”)

True

Bloom Filters: False Positives

function CONTAINS(𝑥)
        return 𝑡! ℎ! 𝑥 == 1 ∧ 𝑡" ℎ" 𝑥 == 1 ∧⋯∧ 𝑡# ℎ# 𝑥 == 1

Bloom filter t of length 𝒎 = 5 that uses 𝒌 = 3 hash functions

ℎ1(“verynormalsite.com”) → 2 



Index 
→ 

0 1 2 3 4

t1 0 1 1 0 0

t2 1 1 0 0 0

t3 0 0 0 0 1

contains(“verynormalsite.com”)

TrueTrue

Bloom Filters: False Positives

function CONTAINS(𝑥)
        return 𝑡! ℎ! 𝑥 == 1 ∧ 𝑡" ℎ" 𝑥 == 1 ∧⋯∧ 𝑡# ℎ# 𝑥 == 1

Bloom filter t of length 𝒎 = 5 that uses 𝒌 = 3 hash functions

ℎ2(“verynormalsite.com”) → 0 
ℎ1(“verynormalsite.com”) → 2 



Index 
→ 

0 1 2 3 4

t1 0 1 1 0 0

t2 1 1 0 0 0

t3 0 0 0 0 1

contains(“verynormalsite.com”)

TrueTrueTrue

Bloom Filters: False Positives

function CONTAINS(𝑥)
        return 𝑡! ℎ! 𝑥 == 1 ∧ 𝑡" ℎ" 𝑥 == 1 ∧⋯∧ 𝑡# ℎ# 𝑥 == 1

Bloom filter t of length 𝒎 = 5 that uses 𝒌 = 3 hash functions

ℎ2(“verynormalsite.com”) → 0 
ℎ1(“verynormalsite.com”) → 2 

ℎ3(“verynormalsite.com”) → 4 



Index 
→ 

0 1 2 3 4

t1 0 1 1 0 0

t2 1 1 0 0 0

t3 0 0 0 0 1

contains(“verynormalsite.com”)

TrueTrueTrue

Bloom Filters: False Positives

function CONTAINS(𝑥)
        return 𝑡! ℎ! 𝑥 == 1 ∧ 𝑡" ℎ" 𝑥 == 1 ∧⋯∧ 𝑡# ℎ# 𝑥 == 1

Since all conditions satisfied, returns True (incorrectly)

Bloom filter t of length 𝒎 = 5 that uses 𝒌 = 3 hash functions

ℎ2(“verynormalsite.com”) → 0 
ℎ1(“verynormalsite.com”) → 2 

ℎ3(“verynormalsite.com”) → 4 



Analysis: False positive probability

Question: For an element 𝑥 ∈ 𝑈, what is the probability that 
contains(𝑥) returns true if add(𝑥) was never executed before? 

Probability over what?!        

Assumptions for the analysis (somewhat stronger than for ordinary 
hashing):
• Each 𝐡& 𝑥  is uniformly distributed in [𝑚] for all 𝑥 and 𝑖
• Hash function outputs for each 𝐡&are mutually independent (not 

just in pairs)
• Different hash functions are independent of each other

Over the choice of the 𝒉$, … , 𝒉7



False positive probability – Events 

47

Assume we perform add 𝑥$ , … ,add 𝑥%  
+ contains(𝑥) for 𝑥 ∉ {𝑥$, … , 𝑥%} 

Event 𝐸&  holds iff 𝐡& 𝑥 ∈ {𝐡& 𝑥$ , … , 𝐡& 𝑥% }

𝑃 false	positive = 𝑃 𝐸N ∩ 𝐸W ∩⋯∩ 𝐸O =R
TXN

O

𝑃(𝐸T)

𝐡1, … , 𝐡#  independent 



False positive probability – Events 
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Event 𝐸&  holds iff 𝐡& 𝑥 ∈ {𝐡& 𝑥$ , … , 𝐡& 𝑥% }

𝑃 𝐸TY =T
ZXN

[

𝑃 𝐡T 𝑥 = 𝑧 ⋅ 𝑃 𝐸TY	 𝐡T 𝑥 = z)

Event 𝐸&8  holds iff 𝐡& 𝑥 ≠ 𝐡& 𝑥$  and … and 𝐡& 𝑥 ≠ 𝐡& 𝑥%  

LTP



False positive probability – Events 
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𝑃 𝐸&8 	𝐡& 𝑥 = 𝑧 =

Event 𝐸!2  holds iff 𝐡! 𝑥 ≠ 𝐡! 𝑥1  and … 
and 𝐡! 𝑥 ≠ 𝐡! 𝑥"  

𝑃 𝐡& 𝑥$ ≠ 𝑧,… , 𝐡& 𝑥% ≠ 𝑧	|	𝐡& 𝑥 = 𝑧

=b
9'$

%

𝑃 𝐡& 𝑥9 ≠ 𝑧

=b
9'$

%

1 −
1
𝑚

= 1 −
1
𝑚

%

𝑃 𝐸&8 = 6
:'$

;

𝑃 𝐡& 𝑥 = 𝑧 ⋅ 𝑃 𝐸&8 	𝐡& 𝑥 = z) = 1 −
1
𝑚

%

= 	𝑃 𝐡& 𝑥$ ≠ 𝑧,… , 𝐡& 𝑥% ≠ 𝑧	Independence of values 
of 𝒉!  on different inputs

Outputs of 𝒉!  uniformly spread



False positive probability – Events 

50

Event 𝐸&  holds iff 𝐡& 𝑥 ∈ {𝐡& 𝑥$ , … , 𝐡& 𝑥% }

Event 𝐸&8  holds iff 𝐡& 𝑥 ≠ 𝐡& 𝑥$  and … and 𝐡& 𝑥 ≠ 𝐡& 𝑥%  

𝑃 𝐸&8 = 1 −
1
𝑚

%

FPR =R
TXN

O

1 − 𝑃 𝐸TY = 1 − 1 −
1
𝑚

] O



False Positivity Rate – Example 
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FPR = 1 − 1 −
1
𝑚

] O

e.g., 𝑛 = 5,000,000
𝑘 = 30
𝑚 = 2,500,000

FPR = 1.28%



Comparison with Hash Tables - Space

Hash Table Bloom Filter

● Google storing 5 million URLs, each URL 40 bytes.
● Bloom filter with 𝑘	 = 	30 and 𝑚 = 	2,500,000

(optimistic) 
5,000,000	×40𝐵 = 200MB 

2,500,000	×30 = 75,000,000 bits 

< 10 MB 



Time

● Say avg user visits 102,000 URLs in a year, of which 2,000 are malicious.
● 0.5 seconds to do lookup in the database, 1ms for lookup in Bloom filter.
● Suppose the false positive rate is 3%

100000	×0.03	×500ms
1ms +

+2000×500	ms

102000
≈ 	25.51ms	

Bloom filter lookup
malicious URLs

0.5 seconds DB lookup
false positives

total URLs



Bloom Filters typical of….

… randomized algorithms and randomized data structures.

• Simple
• Fast
• Efficient
• Elegant
• Useful!
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