Hodgepodge \mid crs32Sming27 Lecture 27

Announcements

Monday is a holiday, we're listing changed office hours on a pinned Ed post.
Remember to find groups for the final (unless you want to work alone, of course). Ed post up - also consider filling out if you're a group of two and want a third person.
We've made it through the core content!
Today we're revisiting some old topics
Wednesday is an application lecture (probability and algorithms)
Friday will be a "victory lap" (wrap up the course/put it into context of what comes next/answer lingering questions).
\hookrightarrow Concept checks for this week due Tuesday (because of holiday)
Remember valuorld $2+$ HW9.

Today

Cover a topic or two that you got a small taste of, but show up much more frequently in ML.

Random Vectors
\leftrightarrow More on Covariance
\rightarrow Multidimensional Guassians
More on Conditioning

Preliminary: Random Vectors

In ML, our data points are often multidimensional.
For example:
To predict housing prices, each data point might have: number of rooms, number of bathrooms, square footage, zip code, year built, ... To make movie recommendations, each data point might have: ratings of existing movies, whether you started a movie and stopped after 10 minutes,...

A single data point is a full vector

Preliminary: Random Vector

A random vector X is a vector where each entry is a random variable.
$\mathbb{E}[X]$ is a vector, where each entry is the expectation of that entry.

For example, if X is a uniform vector from the sample space

Covariance Matrix

Remember Covariance?
 $=\operatorname{Var}\left(x_{i}\right)$.
$\operatorname{Cov}(X, Y)=\mathbb{E}[(X-\mathbb{E}[X])(Y-\mathbb{E}[Y])]=\mathbb{E}[X Y]-\mathbb{E}[X] \mathbb{E}[Y]$
We'll want to talk about covariance between entries:

$$
\begin{aligned}
& \text { Define the "covariance matrix" } \\
& \Sigma=\left[\begin{array}{ccc}
\operatorname{Cov}\left(X_{1}, X_{\sqrt{\prime}}\right. & \ldots & \operatorname{Cov}\left(X_{1}, X_{n}\right) \\
\vdots & \operatorname{Cov}\left(X_{i}, X_{j}\right) & \vdots \\
\operatorname{Cov}\left(X_{n}, X_{1}\right) & \ldots & \operatorname{Cov}\left(X_{n}, X_{n}\right)
\end{array}\right] \\
& \operatorname{Cov}\left(X_{i}, X_{i}\right)
\end{aligned}
$$

Covariance
$\sum \mu=c \cdot \mu$
Conn [$]\left[\mathbb{E}\left[x_{1} x_{2}\right]=\mathbb{E}\left[x_{]} \mathbb{E}\left[x_{0}\right]\right.\right.$

What is Σ ? Which of these pictures are 200 i.i.d. samples of X ?

Covariance

Let's think about 2 dimensions.
Let $X=\left[X_{1}, X_{2}\right]^{T}$ where $X_{i} \sim \mathcal{N}(0,1)$ and X_{1} and X_{2} are independent. What is Σ ? Which of these pictures are 200 i.i.d. samples of X ?

$$
\Sigma=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

Unequal Variances, Still Independent phovicomlou3l2

Let's think about 2 dimensions.
Let $X=\left[X_{1}, X_{2}\right]^{T}$ where $X_{1} \sim \mathcal{N}(0,5), X_{2} \sim \mathcal{N}(0,1)$ and X_{1} and X_{2} are independent.
What is Σ ? Which of these pictures are i.i.d. samples of X ?

Unequal Variances, Still Independent

Let's think about 2 dimensions.
Let $X=\left[X_{1}, X_{2}\right]^{T}$ where $X_{1} \sim \mathcal{N}(0,5), X_{2} \sim \mathcal{N}(0,1)$ and X_{1} and X_{2} are independent.
What is Σ ? Which of these pictures are i.i.d. samples of X ?

$$
\Sigma=\left[\begin{array}{ll}
5 & 0 \\
0 & 1
\end{array}\right]
$$

What about dependence.

When we introduce dependence, we need to know the mean vector and the covariance matrix to define the distribution (instead of just the mean and the variance).
Let's see a few examples...

Dependence

Let's think about 2 dimensions.

Let $X=\left[X_{1}, X_{2}\right]^{T}$ where $\operatorname{Var}\left(X_{1}\right)=1, \operatorname{Var}\left(X_{2}\right)=1$ BUT X_{1} and X_{2} are dependent. $\operatorname{Cov}\left(X_{1}, X_{2}\right)=5$
What is Σ ? Which of these pictures are i.i.d. samples of X ?

Dependence

Let's think about 2 dimensions.
Let $X=\left[X_{1}, X_{2}\right]^{T}$ where $\operatorname{Var}\left(X_{1}\right)=1, \operatorname{Var}\left(X_{2}\right)=1$ BUT X_{1} and X_{2} are dependent. $\operatorname{Cov}\left(X_{1}, X_{2}\right)=5$
What is Σ ? Which of these pictures are i.i.d. samples of X ?

$$
\Sigma=\left[\begin{array}{ll}
1 & 5 \\
5 & 1
\end{array}\right]
$$

Dependence

Let's think about 2 dimensions.
Let $X=\left[X_{1}, X_{2}\right]^{T}$ where $\operatorname{Var}\left(X_{1}\right)=1, \operatorname{Var}\left(X_{2}\right)=1$ BUT X_{1} and X_{2} are dependent. $\operatorname{Cov}\left(X_{1}, X_{2}\right)=-3$
What is Σ ? Which of these pictures are i.i.d. samples of X ?

Dependence

Let's think about 2 dimensions.
Let $X=\left[X_{1}, X_{2}\right]^{T}$ where $\operatorname{Var}\left(X_{1}\right)=1, \operatorname{Var}\left(X_{2}\right)=1$ BUT X_{1} and X_{2} are dependent. $\operatorname{Cov}\left(X_{1}, X_{2}\right)=-3$
What is Σ ? Which of these pictures are i.i.d. samples of X ?

$$
\Sigma=\left[\begin{array}{cc}
1 & -3 \\
-3 & 1
\end{array}\right]
$$

Using the Covariance Matrix

What were those ellipses in those datasets?
How do we know how many standard deviations from the mean a 2D point is, for the independent, variance 1 ones
Well $\left(x_{1}-\mathbb{E}\left[X_{1}\right]\right)$ is the distance from x to the center in the x-direction.
And $\left(x_{2}-\mathbb{E}\left[x_{2}\right]\right)$ is the distance from x to the center in the y-direction.
So the number of standard deviations is $\sqrt{\left(x_{1}-\mathbb{E}\left[X_{1}\right]\right)^{2}+\left(x_{2}-\mathbb{E}\left[x_{2}\right]\right)^{2}}$
That's just the distance!
In general, the major/minor axes of those ellipses were the eigenvectors of the covariance matrix. And the associated eigenvalues tell you how the directions should be weighted.

Probability and ML

You're going to do a lot of conditional expectations, let's talk about why...
Many problems in ML: Given a bunch of data points, you'll find a function f that you hope will predict future points well.
We usually assume there is some true distribution \mathcal{D} of data points (e.g. all theoretical possible houses and their prices).
You get a dataset S that you assume was sampled from \mathcal{D} to find f_{S} f_{S} is a lot like an MLE - it depends on the data, so before you knew what S was, f was a random variable. You then want to figure out what the true error is if you knew \mathcal{D}.

Probability and ML

But \mathcal{D} is a theoretical construct. What can we do instead? Get a second dataset T drawn from \mathcal{D} (drawn independently of S)
(or actually save part of your database before you start).

Then $\mathbb{E}_{\mathcal{D}}$ [error of $\left.f\right]=\mathbb{E}_{T}\left[\right.$ error of $\left.f_{S} \mid S\right]$
But how confident can you be? You'll make confidence intervals (statements like the true error is within 5% of our estimate with probability at least .9) using concentration inequalities.

Practice with conditional expectations

Consider of the following process:
Flip a fair coin, if it's heads, pick up a 4-sided die; if it's tails, pick up a 6sided die (both fair)
Roll that die independently 3 times. Let X_{1}, X_{2}, X_{3} be the results of the three rolls.

What is $\mathbb{E}\left[X_{2}\right]$? $\mathbb{E}\left[X_{2} \mid X_{1}=5\right]$? $\mathbb{E}\left[X_{2} \mid X_{3}=1\right]$?

Using conditional expectations

Let F be the event "the four sided die was chosen"
$\mathbb{E}\left[X_{2}\right]=\mathbb{P}(F) \mathbb{E}\left[X_{2} \mid F\right]+\mathbb{P}(\bar{F}) \mathbb{E}\left[X_{2} \mid \bar{F}\right]$
$=\frac{1}{2} \cdot 2.5+\frac{1}{2} \cdot 3.5=3$
$\mathbb{E}\left[X_{2} \mid X_{1}=5\right]$ event $X_{1}=5$ tells us we're using the 6 -sided die.
$\mathbb{E}\left[X_{2} \mid X_{1}=5\right]=3.5$
$\mathbb{E}\left[X_{2} \mid X_{3}=1\right]$ We aren't sure which die we got, but...is it still $50 / 50$?

Setup

Let E be the event " $X_{3}=1$ "
$\mathbb{P}(E)=\frac{1}{2} \cdot \frac{1}{6}+\frac{1}{2} \cdot \frac{1}{4}=\frac{5}{24}$
$\mathbb{P}(F \mid E)=\frac{\mathbb{P}(E \mid F) \cdot \mathbb{P}(F)}{\mathbb{P}(E)}$
$=\frac{\frac{1.1}{4} \cdot \frac{1}{2}}{5 / 24}=\frac{3}{5}$
$\mathbb{P}(\bar{F} \mid E)=\frac{\mathbb{P}(E \mid \bar{F}) \cdot \mathbb{P}(\bar{F})}{\mathbb{P}(E)}=\frac{\frac{1}{6} \cdot \frac{1}{2}}{5 / 24}=\frac{2}{5}$ (we could also get this with LTP, but it's good confirmation)

Analysis

$\mathbb{E}\left[X_{2} \mid X_{3}=1\right]=\mathbb{P}\left(F \mid X_{3}=1\right) \mathbb{E}\left[X_{2} \mid X_{3}=1 \cap F\right]+\mathbb{P}\left(\bar{F} \mid X_{3}=1\right) \mathbb{E}\left[X_{2} \mid X_{3}=1 \cap \bar{F}\right]$
Wait what?
This is the LTE, applied in the space where we've conditioned on $X_{3}=1$.
Everything is conditioned on $X_{3}=1$. Beyond that conditioning, it's LTE.
$=\frac{3}{5} \cdot 2.5+\frac{2}{5} \cdot 3.5=2.9$.
A little lower than the unconditioned expectation. Because seeing a 1 has made it ever so slightly more probable that we're using the 4 -sided die.

