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Outline

Last time: Trying to estimate an unknown parameter 𝜃 of a distribution.

We chose the “maximum likelihood estimator”

argmaxθ ℒ(𝑥; 𝜃)

Usually: write likelihood, take log, take derivative, confirm maximum

Today: What happens when you have two parameters, MLEs that aren’t 
what you expect.



Question for today

We saw last time that to estimate 𝜇 for 𝒩(𝜇, 1) we get:

Now what happens if we know our data is 𝒩() but nothing else. Both 
the mean and the variance are unknown. 



Log-likelihood

Let 𝜃𝜇 and 𝜃𝜎2 be the unknown mean and standard deviation of a 
normal distribution. Suppose we get independent draws 𝑥1, 𝑥2, … , 𝑥𝑛.
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Expectation
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Setting equal to 0 and solving
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𝜃𝜎2 is an estimate of a variance. It’ll never be negative (and 

as long as the draws aren’t identical it won’t be 0). So the second 
derivative is negative and we really have a maximizer.

Arithmetic is nearly 

identical to known 

variance case.



Variance
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Variance part 2
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To get the overall max

We’ll plug in 𝜃𝜇



Summary

If you get independent samples 𝑥1, 𝑥2, … , 𝑥𝑛 from a 𝒩(𝜇, 𝜎2) where 𝜇
and 𝜎2are unknown, the maximum likelihood estimates of the normal is:
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The maximum likelihood estimator of the mean is the sample mean that 
is the estimate of 𝜇 is the average value of all the data points.

The MLE for the variance is: the variance of the experiment “choose one 
of the 𝑥𝑖 at random”



Biased

One property we might want from an estimator is for it to be unbiased.

The expectation is taken over the randomness in the samples we drew.

(those samples are random variables).

So we’re not consistently overestimating or underestimating. 

If an estimator isn’t unbiased then it’s biased.

An estimator መ𝜃 is “unbiased” if

𝔼 መ𝜃 = 𝜃



Are our MLEs unbiased?
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Unbiased!



Are our MLEs biased?

Our estimate for the coin-flips (if we generalized a bit) would be 
num heads

total flips

Fill out the poll everywhere so Robbie 

knows how long to explain

Go to pollev.com/cse312



Are our MLEs biased?

Our estimate for the coin-flips (if we generalized a bit) would be 
num heads

total flips

What is 𝔼
num heads

total flips
=

𝜃⋅𝑛

𝑛
= 𝜃

Unbiased!

Fill out the poll everywhere so Robbie 

knows how long to explain

Go to pollev.com/cse312



Unbiased?
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Then an algebraic miracle occurs…
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Not Unbiased
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Which is not what we wanted. This is a biased estimator. But it’s not too 
biased…

An estimator መ𝜃 is “consistent” if
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Correction

The MLE slightly underestimates the true variance.

You could correct for this! Just multiply by 
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This would give you a formula of:
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where𝜃𝜇 is the sample mean. 

Called the “sample variance” because it’s the variance you estimate if 
you want an (unbiased) estimate of the variance given only a sample.

If you took a statistics course, you probably learned the square root of 
this as the definition of variance.



Fun Facts



What’s with the 𝑛 − 1?

Soooooooooo, why is the MLE off?

Intuition 1: when we’re comparing to the real mean, 𝑥1 doesn’t affect the 
real mean (the mean is what the mean is regardless of what you draw). 

But when you compare to the sample mean, 𝑥1 pulls the sample mean 
toward it, decreasing the variance a tiny bit. 

Intuition 2: We only have 𝑛 − 1 “degrees of freedom” with the mean and 
𝑛 − 1 of the data points, you know the final data point. Only 𝑛 − 1 of 
the data points have “information” the last is fixed by the sample mean.



Why does it matter?

When statisticians are estimating a variance from a sample, they usually 
divide by 𝑛 − 1 instead of 𝑛.

They also (with unknown variance) generally don’t use the CLT to 
estimate probabilities.

A “t-test” is used when scientists/statisticians think their 

They aren’t using the Φ() table, they’re using a different table based on 
the altered variance estimates.



Why use MLEs? Are there other estimators?

If you have a prior distribution over what values of 𝜃 are likely, 
combining the idea of Bayes rule with the idea of an MLE will give you 

Maximum a posteriori probability estimation (MAP)

You pick the maximum value of ℙ(𝜃|𝐸) starting from a known prior over 
possible values of 𝜃.

argmaxθ
ℙ(𝐸|𝜃)⋅ℙ(𝜃)

ℙ(𝐸)
= argmaxθℙ(𝐸|𝜃) ⋅ ℙ(𝜃)

ℙ(𝐸) is a constant, so the argmax is unchanged if you ignore it.

Note when prior is constant, you get MLE!


