
Application: Tail Bounds



Let 𝑋 be a random variable 

supported (only) on non-negative 

numbers. For any 𝒕 > 𝟎

ℙ 𝑿 ≥ 𝒕 ≤
𝔼[𝑿]

𝒕

Markov’s Inequality

Let 𝑋 be a random variable. For 

any 𝒕 > 𝟎

ℙ 𝑿 − 𝔼 𝑿 ≥ 𝒕 ≤
𝐕𝐚𝐫(𝑿)

𝒕𝟐

Chebyshev’s Inequality

Let 𝑋1, 𝑋2, … , 𝑋𝑛 be independent Bernoulli random variables. 

Let 𝑋 = ∑𝑋𝑖,  and 𝜇 = 𝔼 𝑋 . For any 0 ≤ 𝛿 ≤ 1

ℙ 𝑋 ≥ 1 + 𝛿 𝜇 ≤ exp −
𝛿2𝜇

3
and ℙ 𝑋 ≤ 1 − 𝛿 𝜇 ≤ exp −

𝛿2𝜇

2

(Multiplicative) Chernoff Bound



Wait a Minute

I asked Wikipedia about the “Chernoff Bound” and I saw something 
different?

This is the “easiest to use” version of the bound. If you need something 
more precise, there are other versions. 

Why are the tails different??

The strongest/original versions of “Chernoff bounds” are symmetric (1 +
𝛿 and 1 − 𝛿 correspond), but those bounds are ugly and hard to use.

When computer scientists made the “easy to use versions”, they needed 
to use some inequalities. The numerators now have plain old 𝛿’s, instead 
of 1 + or 1 −. As part of the simplification to this version, there were 
different inequalities used so you don’t get exactly the same expression. 



Wait a Minute

This is just a binomial!

The concentration inequality will let you control 𝑛 easily, even as a 
variable. That’s not easy with the binomial.

What happens when 𝑛 gets big?

Evaluating 20000
10000

. 5110000 ⋅.4910000 is fraught with chances for floating 

point error and other issues. Chernoff is much better.



But Wait! There’s More

For this class, please limit yourself to:
Markov, Chebyshev, and Chernoff, as stated in these slides…

But for your information. There’s more.

Trying to apply Chebyshev, but only want a “one-sided” bound (and tired of 
losing that almost-factor-of-two)Try Cantelli’s Inequality

In a position to use Chernoff, but want additive distance to the mean instead 
of multiplicative? They got one of those.

Have a sum of independent random variables that aren’t indicators, but are 
bounded, you better believe Wikipedia’s got one

Have a sum of random matrices instead of a sum of random numbers. Not 
only is that a thing you can do, but the eigenvalue of the matrix concentrates

https://en.wikipedia.org/wiki/Cantelli%27s_inequality
https://en.wikipedia.org/wiki/Chernoff_boundAdditive_form_(absolute_error)
https://en.wikipedia.org/wiki/Hoeffding%27s_inequality#General_case_of_bounded_random_variables
https://en.wikipedia.org/wiki/Matrix_Chernoff_bound


Next Time

One more bound (the union bound)

Not a concentration bound -- one more tool for handling non-
independence.

We’ll see it in the context of some applications!



One More Bound

The Union bound

For any events 𝐸, 𝐹
ℙ 𝑬 ∪ 𝑭 ≤ ℙ 𝑬 + ℙ(𝑭)

Union Bound

Proof? ℙ 𝐸 ∪ 𝐹 = ℙ 𝐸 + ℙ 𝐹 − ℙ(𝐸 ∩ 𝐹)

And ℙ 𝐸 ∩ 𝐹 ≥ 0.



Concentration Applications

A common pattern:

Figure out “what could possibly go wrong” – often these are dependent.

Use a concentration inequality for each of the things that could go 
wrong.

Union bound over everything that could go wrong. 



Frogs

There are 20 frogs on each location in a 5x5 grid. Each frog will
independently jump to the left, right, up, down, or stay where it is with 
equal probability. A frog at an edge of the grid magically warps to the
corresponding edge (pac-man-style).

Bound the probability that at least one square ends up with at least 36 
frogs.

These events are dependent – adjacent squares affect each other! 



Frogs

For an arbitrary location:

There are 100 frogs who could end up there (those above, below, left, 
right, and at that location). Each with probability .2. Let 𝑋 be the number 
that land at the location we’re interested in.

ℙ 𝑋 ≥ 36 = ℙ 𝑋 ≥ 1 + 𝛿 20 ≤ exp −
4

5

2
⋅20

3
≤ 0.015

There are 25 locations. Since all locations are symmetric, by the union 
bound the probability of at least one location having 36 or more frogs is 
at most 25 ⋅ 0.015 ≤ 0.375.



Tail Bounds – Takeaways 

Useful when an experiment is complicated and you just need the 
probability to be small (you don’t need the exact value).

Choosing a minimum 𝑛 for a poll – don’t need exact probability of 
failure, just to make sure it’s small.

Designing probabilistic algorithms – just need a guarantee that they’ll 
be extremely accurate 

Learning more about the situation (e.g. learning variance instead of just 
mean, knowing bounds on the support of the starting variables) usually 
lets you get more accurate bounds.



Applications



Privacy Preservation

A real-world example (adapted from The Ethical Algorithm by Kearns 
and Roth; based on protocal by Warner [1965]).

And gives a sense of how randomness is actually used to protect 
privacy.



Privacy Preservation with Randomness

You’re working with a social scientist. They want to get accurate data on 
the rate at which people cheat on their spouses. 

We know about polling accuracy! 

Do a poll, call up a random sample of married adults and ask them 
“have you ever cheated on your spouse?”

Use a tail-bound to estimate the needed number 𝑛 get a guaranteed 
good estimate, right?

You do that, and somehow, no one says they cheated on their spouse.



What’s the problem?

People lie. 

Or they might be concerned about you keeping this data.

Databases can be leaked (or infiltrated. Or subpoenaed).

You don’t want to hold this data, and the people you’re calling don’t 
want you to hold this data.



Doing Better With Randomness

You don’t really need to know who was cheating. Just how many people 
were. 

Here’s a protocol:

Please flip a coin. 
If the coin is heads, or you have ever cheated on your spouse, please tell me 
“heads”

If the coin is tails and you have not ever cheated on your spouse, please tell me 
“tails”



Will it be private?

If you are someone who has cheated on your spouse, and you report
heads can that be used against you? Not substantially – just say “no the 
coin came up heads!”

ℙ 𝐶 𝐻 =
ℙ(𝐻|𝐶)⋅ℙ(𝐶)

ℙ(𝐻)
=

1⋅ℙ(𝐶)
1

2
+
1

2
⋅ℙ(𝐶)

Is this a substantial change?

No. For real world values (~15%) of ℙ(𝐶), the probability estimate would 
increase (to ~23%). But that isn’t too damaging. 



But will it be accurate?

But we’ve lost our data haven’t we? People answered a different question. 
Can we still estimate how many people cheated?

Suppose you poll 𝑛 people, and let 𝑋 be the number of people who said 
“heads” We’ll find an estimate 𝑌 of the number of people who cheated in the 
sample, and let 𝑝 be the true probability of cheating in the population.
What should 𝑌 be? Can we draw a margin of error around 𝑌?

ℙ 𝑋𝑖 = 1 =
1

2
+

1

2
⋅ 𝑝

𝔼 𝑋 =
𝑛

2
+

1

2
𝔼 𝑌

We’ll define 𝑌 to be: 𝑌 = 2 𝑋 −
𝑛

2
. This is a definition, based on how the 

𝔼[𝑌] should relate to the 𝔼[𝑋].



But will it be accurate?

𝔼 𝑋 =
𝑛

2
+

1

2
𝔼[𝑌]

𝑌 = 2 𝑋 −
𝑛

2

Var 𝑋 = Var ∑𝑋𝑖 = ∑Var 𝑋𝑖

Var 𝑋𝑖 ? It’s an indicator with parameter 𝑝 + 1 − 𝑝 ⋅
1

2
=

1

2
+

𝑝

2

So Var 𝑋𝑖 =
1

2
+

𝑝

2

1

2
−

𝑝

2

Var 𝑌 = 4Var 𝑋 = 4𝑛Var 𝑋𝑖 = 4𝑛
1

2
+

𝑝

2

1

2
−

𝑝

2
≤

4𝑛

4
= 𝑛

The variance is 4 times as much as it would have been for a non-anonymous 
poll.



Can we use Chernoff?

What happens with n = 1000 people?

What range will we be within at least 95% of the time?

Let 𝑋1, 𝑋2, … , 𝑋𝑛 be independent Bernoulli random variables. 

Let 𝑋 = ∑𝑋𝑖,  and 𝜇 = 𝔼 𝑋 . For any 0 ≤ 𝛿 ≤ 1

ℙ 𝑋 ≥ 1 + 𝛿 𝜇 ≤ exp −
𝛿2𝜇

3
and ℙ 𝑋 ≤ 1 − 𝛿 𝜇 ≤ exp −

𝛿2𝜇

2

(Multiplicative) Chernoff Bound



A different inequality

If we try to use Chernoff, we’ll hit a frustrating block.

Since 𝜇 depends on 𝑝, 𝑝 appears in the formula for 𝛿. And we wouldn’t 
get an absolute guarantee unless we could plug in a 𝑝.

And it’ll turn out that as 𝑝 → 0 that 𝛿 → ∞ so we don’t say anything 
then.

Luckily, there’s always another bound…



 Can’t bound 𝛿 without bounding 𝑝

The right tail is the looser bound, so ensuring the right tail is less than 
2.5% gives us the needed guarantee.

ℙ 𝑋 ≥ 1 + 𝛿 𝜇 ≤ exp −
𝛿2𝜇

3
= exp −

𝛿21000𝑝

3
≤ .025

−
𝛿21000𝑝

3
≤ ln(.025)

−𝛿2≤
3⋅ln .025

1000𝑝

𝛿 ≥
−3ln(.025)

1000𝑝

As 𝑝 → 0, 𝛿 → ∞ – we’re not actually making a claim anymore.



Hoeffding’s Inequality

𝑋 − 𝔼 𝑋 ≥ 𝑡 if and only if |𝑌 − 𝔼 𝑌 | ≥ 2𝑡. Why?

Let 𝑋1, 𝑋2, … , 𝑋𝑛 be independent RVs, each with range [0,1]. 

Let ത𝑋 = ∑𝑋𝑖/𝑛,  and 𝜇 = 𝔼 ത𝑋 . For any 𝑡 ≥ 0

ℙ ത𝑋 − 𝔼 ത𝑋 ≥ 𝑡 ≤ 2 exp −2𝑛𝑡2

Hoeffding’s Inequality



𝑌 = 2 𝑋 −
𝑛

2
or 𝑋 =

𝑌+𝑛

2

𝑋 − 𝔼 𝑋

=
𝑌+𝑛

2
− 𝔼

𝑌+𝑛

2

=
𝑌+𝑛

2
− 𝔼

𝑌

2
−

𝑛

2

=
𝑌

2
− 𝔼

𝑌

2

=
1

2
𝑌 − 𝔼 𝑌

So 𝑋 − 𝔼 𝑋 ≥ 𝑡 if and only if 
1

2
𝑌 − 𝔼 𝑌 ≥ 𝑡 iff 𝑌 − 𝔼 𝑌 ≥ 2𝑡.



Hoeffding’s Inequality

How close will we be with n=1000 with probability at least .95?

𝑋 − 𝔼 𝑋 ≥ 𝑡 if and only if |𝑌 − 𝔼 𝑌 | ≥ 2𝑡. 

Let 𝑋1, 𝑋2, … , 𝑋𝑛 be independent RVs, each with range [0,1]. 

Let ത𝑋 = ∑𝑋𝑖/𝑛,  and 𝜇 = 𝔼 ത𝑋 . For any 𝑡 ≥ 0

ℙ ത𝑋 − 𝔼 ത𝑋 ≥ 𝑡 ≤ 2 exp −2𝑛𝑡2

Hoeffding’s Inequality



Margin of Error

ℙ 𝑌 − 𝔼 𝑌 ≥ 𝑡 = ℙ 𝑋 − 𝔼 𝑋 ≥ 𝑡/2 ≤ 2exp −2𝑛𝑡2 ≤ .05

For 𝑛 = 1000, we get:

2 exp −2𝑛
𝑡

2

2
≤ .05 ⇒ −

2000𝑡2

4
≤ ln .025 ⇒ 𝑡 ≤ .086. 

ℙ 𝑌 − 𝔼 𝑌 ≥ .086 ≤ .05

So our margin of error is about 8.6%.

To get a margin-of-error of 5% need 2 exp −2𝑛
.05

2

2
≤ .05

𝑛 ≥ 2952



How much do we lose?

We lose a factor of two in the length of the margin (equivalently, we’d 
need to talk to 4 times as many people to have the same confidence.

You can also control this tradeoff. 

Want more accuracy? Make it roll a die: report 1 if cheated (truth o/w)

Want more security? Make it Bernoulli with probability 𝑝 ≫
1

2
or cheated 

have the same report (e.g. report “die roll 1 [and didn’t cheat]” or “die 
roll 2-6 [or did cheat]”



In The Real World

Injecting random ness to preserve privacy is a real thing.

Instead of having everyone flip a coin, “random noise” can be inserted 
after all the data has been collected.

Differential privacy is being used to protect the 2020 Census data. 

The overall count of people in each state is exact (well, exactly the data 
they collected). But the data per block or per city will be randomized to 
protect against . 

This video nicely explains what’s involved. Notice that the accuracy 
guarantees come in the same “inside-margin-of-error-with-probability” 
guarantees we’ve been giving for our randomness (just much stronger).

https://www.youtube.com/watch?v=pT19VwBAqKA

