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Joint Expectation

This definition hopefully isn’t surprising at this point (it’s the value of 𝑔
times the probability 𝑔 takes on that value), but it’s good to 

For a function 𝒈(𝑿, 𝒀), the expectation can be written in terms of 

the joint pmf. 

𝔼 𝒈 𝑿, 𝒀 = 

𝒙∈𝛀𝐗



𝒚∈𝛀𝐘

𝒈 𝒙, 𝒚 ⋅ 𝒇𝑿𝒀(𝒙, 𝒚)

Expectations of joint functions



Conditional Expectation

Waaaaaay back when, we said conditioning on an event creates a new 
probability space, with all the laws holding.

So we can define things like “conditional expectations” which is the 
expectation of a random variable in that new probability space.

𝔼 𝑿 𝑬 = 

𝒙∈𝛀

𝒙 ⋅ ℙ(𝑿 = 𝒙|𝑬)

𝔼 𝑿 𝒀 = 𝒚 = 

𝒙∈𝛀𝑿

𝒙 ⋅ ℙ 𝑿 = 𝒙 𝒀 = 𝒚



Conditional Expectations

All your favorite theorems are still true. 

For example, linearity of expectation still holds

𝔼 (𝒂𝑿 + 𝒃𝒀 + 𝒄) 𝑬] = 𝒂𝔼 𝑿 𝑬 + 𝒃𝔼 𝒀 𝑬 + 𝒄



Law of Total Expectation

Let 𝑨𝟏, 𝑨𝟐, … , 𝑨𝒌 be a partition of the sample space, then

𝔼[𝑿] =
𝒊=𝟏

𝒏

𝔼 𝑿 𝑨𝒊 ℙ(𝑨𝒊)

Let 𝑿, 𝒀 be discrete random variables, then

𝔼[𝑿] =
𝒚∈𝛀𝒀

𝔼 𝑿 𝒀 = 𝒚 ℙ(𝒀 = 𝒚)

Similar in form to law of total probability, and the proof goes that way 

as well.



LTE

You will flip 2 (independent, fair coins). Call the number of heads 𝑋. 
Then (independently of the coin flips) draw an exponential random 
variable 𝑌 from the distribution Exp(𝑋 + 1). 

What is 𝔼[𝑌]?



LTE

You will flip 2 (independent, fair coins). Call the number of heads 𝑋. 
Then (independently of the coin flips) draw an exponential random 
variable 𝑌 from the distribution Exp(𝑋 + 1). 

What is 𝔼[𝑌]?

𝔼 𝑌

= 𝔼 𝑌 𝑋 = 0 ℙ 𝑋 = 0 + 𝔼 𝑌 𝑋 = 1 ℙ 𝑋 = 1 + 𝔼 𝑌 𝑋 = 2 ℙ 𝑋 = 2

= 𝔼 𝑌 𝑋 = 0 ⋅
1

4
+ 𝔼 𝑌 𝑋 = 1 ⋅

1

2
+ 𝔼 𝑌 𝑋 = 2 ⋅

1

4

=
1

0+1
⋅
1

4
+

1

1+1
⋅
1

2
+

1

2+1
⋅
1

4
=

7

12
.



Analogues for continuous
Everything we saw today has a continuous version.

There are “no surprises”– replace pmf with pdf and sums with integrals. 



Covariance

We sometimes want to measure how “intertwined” 𝑋 and 𝑌 are – how 
much knowing about one of them will affect the other.

If 𝑋 turns out “big” how likely is it that 𝑌 will be “big” how much do they 
“vary together”

𝐂𝐨𝐯 𝐗, 𝐘 = 𝔼 𝑿 − 𝔼 𝑿 (𝒀 − 𝔼 𝒀 ) = 𝔼 𝑿𝒀 − 𝔼[𝑿]𝔼[𝒀]

Covariance



Covariance

Var 𝑋 + 𝑌 = Var 𝑋 + Var 𝑌 + 2Cov(𝑋, 𝑌)

That’s consistent with our previous knowledge for independent 
variables. (for 𝑋, 𝑌 independent, 𝔼 𝑋𝑌 = 𝔼 𝑋 𝔼[𝑌]). 

You and your friend are playing a game, you flip a coin: if heads you pay 
your friend a dollar, if tails they pay you a dollar. Let 𝑋 be your profit 
and 𝑌 be your friend’s profit.

What is Var(𝑋 + 𝑌)?



Covariance

You and your friend are playing a game, you flip a coin: if heads you pay 
your friend a dollar, if tails they pay you a dollar. Let 𝑋 be your profit 
and 𝑌 be your friend’s profit.

What is Var(𝑋 + 𝑌)?

Var 𝑋 = Var 𝑌 = 𝔼 𝑋2 − 𝔼 𝑋 2 = 1 − 02 = 1

Cov 𝑋, 𝑌 = 𝔼 𝑋𝑌 − 𝔼[𝑋]𝔼[𝑌]

𝔼 𝑋𝑌 =
1

2
⋅ −1 ⋅ 1 +

1

2
1 ⋅ −1 = −1

Cov 𝑋, 𝑌 = −1 − 0 ⋅ 0 = −1.

Var 𝑋 + 𝑌 = 1 + 1 + 2 ⋅ −1 = 0



Tail Bounds



What’s a Tail Bound?

When we were finding our margin of error, we didn’t need an exact 
calculation of the probability.

We needed an inequality: the probability of being outside the margin of 
error was at most 5%.

A tail bound (or concentration inequality) is a statement that bounds 
the probability in the “tails” of the distribution (says there’s very little 
probability far from the center) or (equivalently) says that the probability 
is concentrated near the expectation.



Our First bound

To apply this bound you only need to know:

1. it’s non-negative

2. Its expectation. 

Let 𝑋 be a random variable 

supported (only) on non-negative 

numbers. For any 𝒕 > 𝟎

ℙ 𝑿 ≥ 𝒕 ≤
𝔼[𝑿]

𝒕

Markov’s Inequality

Let 𝑋 be a random variable 

supported (only) on non-negative 

numbers. For any 𝐤 > 𝟎

ℙ 𝑿 ≥ 𝒌𝔼[𝑿] ≤
𝟏

𝒌

Markov’s Inequality

Two statements are equivalent. 

Left form is often easier to use. 

Right form is more intuitive.



Proof

𝔼 𝑋 = σ𝑥∈Ω 𝑥 ⋅ ℙ(𝑋 = 𝑥)

= 

𝑥:𝑥≥𝑡

𝑥 ⋅ ℙ(𝑋 = 𝑥) + 

𝑥:𝑥<𝑡

𝑥 ⋅ ℙ(𝑋 = 𝑥)

≥ 

𝑥:𝑥≥𝑡

𝑥 ⋅ ℙ(𝑋 = 𝑥) + 0

≥ 

𝑥:𝑥≥𝑡

𝑡 ⋅ ℙ 𝑋 = 𝑥

= 𝑡 ⋅ 

𝑥:𝑥≥𝑡

ℙ 𝑋 = 𝑥

= 𝑡 ⋅ ℙ(𝑋 ≥ 𝑡)

𝑥 ≥ 0 whenever ℙ 𝑋 = 𝑥 > 0

Let 𝑋 be a random variable 

supported (only) on non-negative 

numbers. For any 𝒕 > 𝟎

ℙ 𝑿 ≥ 𝒕 ≤
𝔼[𝑿]

𝒕

Markov’s Inequality



Example with geometric RV

Suppose you roll a fair (6-sided) die until you see a 6. Let 𝑋 be the 
number of rolls. 

Bound the probability that 𝑋 ≥ 12

ℙ 𝑋 ≥ 12 ≤
𝔼 𝑋

12
=

6

12
=

1

2
.

Exact probability?

1 − ℙ 𝑋 < 12 ≈ 1 − 0.865 = .135

Let 𝑋 be a random variable 

supported (only) on non-negative 

numbers. For any 𝒕 > 𝟎

ℙ 𝑿 ≥ 𝒕 ≤
𝔼[𝑿]

𝒕

Markov’s Inequality



A Second Example

Suppose the average number of ads you see on a website is 25. Give an 
upper bound on the probability of seeing a website with 75 or more 
ads.

Let 𝑋 be a random variable 

supported (only) on non-negative 

numbers. For any 𝒕 > 𝟎

ℙ 𝑿 ≥ 𝒕 ≤
𝔼[𝑿]

𝒕

Markov’s Inequality



A Second Example

Suppose the average number of ads you see on a website is 25. Give an 
upper bound on the probability of seeing a website with 75 or more 
ads.

ℙ 𝑋 ≥ 75 ≤
𝔼 𝑋

75
=

25

75
=

1

3

Let 𝑋 be a random variable 

supported (only) on non-negative 

numbers. For any 𝒕 > 𝟎

ℙ 𝑿 ≥ 𝒕 ≤
𝔼[𝑿]

𝒕

Markov’s Inequality



Useless Example

Suppose the average number of ads you see on a website is 25. Give an 
upper bound on the probability of seeing a website with 20 or more 
ads.

Let 𝑋 be a random variable 

supported (only) on non-negative 

numbers. For any 𝒕 > 𝟎

ℙ 𝑿 ≥ 𝒕 ≤
𝔼[𝑿]

𝒕

Markov’s Inequality



Useless Example

Suppose the average number of ads you see on a website is 25. Give an 
upper bound on the probability of seeing a website with 20 or more 
ads.

ℙ 𝑋 ≥ 20 ≤
𝔼 𝑋

20
=

25

20
= 1.25

Well, that’s…true. Technically.

But without more information we couldn’t hope to do much better. What 
if every page gives exactly 25 ads? Then the probability really is 1.



So…what do we do?

A better inequality!

We’re trying to bound the tails of the distribution. 

What parameter of a random variable describes the tails?

The variance!



Chebyshev’s Inequality

Let 𝑋 be a random variable. For 

any 𝒕 > 𝟎

ℙ 𝑿 − 𝔼 𝑿 ≥ 𝒕 ≤
𝐕𝐚𝐫(𝑿)

𝒕𝟐

Chebyshev’s Inequality

Let 𝑋 be a random variable. For 

any 𝐤 > 𝟎

ℙ 𝑿 − 𝔼 𝑿 ≥ 𝒌 𝐕𝐚𝐫 𝑿 ≤
𝟏

𝒌𝟐

Chebyshev’s Inequality

Two statements are equivalent. 

Left form is often easier to use. 

Right form is more intuitive.



Proof of Chebyshev

Let 𝑍 = 𝑋 − 𝔼 𝑋

ℙ |𝑍| ≥ 𝑡 = ℙ 𝑍2 ≥ 𝑡2 ≤
𝔼 𝑍2

𝑡2
=

𝔼 𝑍2 − 𝔼 𝑍 2

𝑡2
=

Var 𝑍

𝑡2
=

Var(𝑋)

𝑡2

Let 𝑋 be a random variable. For 

any 𝒕 > 𝟎

ℙ 𝑿 − 𝔼 𝑿 ≥ 𝒕 ≤
𝐕𝐚𝐫(𝑿)

𝒕𝟐

Chebyshev’s Inequality

Inequalities are 

equivalent (square 

each side).

Markov’s 

Inequality 𝔼 𝑍 = 0

𝑍 is just 𝑋 shifted. 

Variance is 

unchanged.



Example with geometric RV

Suppose you roll a fair (6-sided) die until you see a 6. Let 𝑋 be the 
number of rolls. 

Bound the probability that 𝑋 ≥ 12

ℙ 𝑋 ≥ 12 ≤ ℙ 𝑋 − 6 ≥ 6 ≤

5/6

1/36

62
=

5

6

Not any better than Markov  Let 𝑋 be a random variable. For 

any 𝒕 > 𝟎

ℙ 𝑿 − 𝔼 𝑿 ≥ 𝒕 ≤
𝐕𝐚𝐫(𝑿)

𝒕𝟐

Chebyshev’s Inequality



Example with geometric RV

Suppose you roll a fair (6-sided) die until you see a 6. Let 𝑋 be the 
number of rolls. 

Bound the probability that 𝑋 ≥ 12

ℙ 𝑋 ≥ 12 ≤ ℙ 𝑋 − 6 ≥ 6 ≤

5/6

1/36

62
=

5

6

Not any better than Markov  Let 𝑋 be a random variable. For 

any 𝒕 > 𝟎

ℙ 𝑿 − 𝔼 𝑿 ≥ 𝒕 ≤
𝐕𝐚𝐫(𝑿)

𝒕𝟐

Chebyshev’s Inequality



Example with geometric RV

Let 𝑋 be a geometric rv with parameter 𝑝

Bound the probability that 𝑋 ≥
2

𝑝

ℙ 𝑋 ≥ 2/𝑝 ≤ ℙ 𝑋 − 1/𝑝 ≥ 1/𝑝 ≤

1−𝑝

𝑝2

1/𝑝2
= 1 − 𝑝

Markov gives:

ℙ 𝑋 ≥
2

𝑝
=

𝔼 𝑋

2/𝑝
=

1

𝑝
⋅
𝑝

2
=

1

2
.

For large 𝑝, Chebyshev is better.

Let 𝑋 be a random variable. For 

any 𝒕 > 𝟎

ℙ 𝑿 − 𝔼 𝑿 ≥ 𝒕 ≤
𝐕𝐚𝐫(𝑿)

𝒕𝟐

Chebyshev’s Inequality



Better Example

Suppose the average number of ads you see on a website is 25. And the 
variance of the number of ads is 16. Give an upper bound on the 
probability of seeing a website with 30 or more ads.



Better Example

Suppose the average number of ads you see on a website is 25. And the 
variance of the number of ads is 16. Give an upper bound on the 
probability of seeing a website with 30 or more ads.

ℙ 𝑋 ≥ 30 ≤ ℙ 𝑋 − 25 ≥ 5 ≤
16

25



Chebyshev’s – Repeated Experiments

How many coin flips (each head with probability 𝑝) are needed until you 
get 𝑛 heads.

Let 𝑋 be the number necessary. What is probability 𝑋 ≥ 2𝑛/𝑝?

Markov

Chebyshev



Chebyshev’s – Repeated Experiments

How many coin flips (each head with probability 𝑝) are needed until you 
get 𝑛 heads.

Let 𝑋 be the number necessary. What is probability 𝑋 ≥ 2𝑛/𝑝?

Markov

Chebyshev

ℙ 𝑋 ≥
2𝑛

𝑝
≤

𝑛/𝑝

2𝑛/𝑝
=

1

2

ℙ 𝑋 ≥
2𝑛

𝑝
≤ ℙ 𝑋 −

𝑛

𝑝
≥

𝑛

𝑝
≤

Var(𝑋)

𝑛2/𝑝2
=

𝑛(1−𝑝)/𝑝2

𝑛2/𝑝2
=

1−𝑝

𝑛



Tail Bounds – Takeaways 

Useful when an experiment is complicated and you just need the 
probability to be small (you don’t need the exact value).

Choosing a minimum 𝑛 for a poll – don’t need exact probability of 
failure, just to make sure it’s small.

Designing probabilistic algorithms – just need a guarantee that they’ll 
be extremely accurate 

Learning more about the situation (e.g. learning variance instead of just 
mean) usually lets you get more accurate bounds.

Next time: more assumptions to get better bounds.


