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Normal Random Variable

Let’s get some intuition for that density…

Is 𝔼 𝑋 = 𝜇?

Yes! Plug in 𝜇 − 𝑘 and 𝜇 + 𝑘 and you’ll get the same density for every 𝑘. 
The density is symmetric around 𝜇. The expectation must be 𝜇.

𝑋 is a normal (aka Gaussian) random variable with mean 𝜇 and variance 𝜎2

(written 𝑋~𝒩(𝜇, 𝜎2)) if it has the density:
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Changing the variance

Green: 𝜎2 = .7
Red 𝜎2 = 1
Blue: 𝜎2 = 2



Changing the mean

Green: 𝜎2 = .7, 𝜇 = 0
Purple 𝜎2 = .7, 𝜇 = −1



Scaling Normals

When we scale a normal (multiplying by a constant or adding a 
constant) we get a normal random variable back!

If 𝑋~𝒩 𝜇, 𝜎2

Then for 𝑌 = 𝑎𝑋 + 𝑏, 𝑌~𝒩 𝑎𝜇 + 𝑏, 𝑎2𝜎2

Normals are unique in that you get a NORMAL back.

If you multiply a binomial by 3/2 you don’t get a binomial (it’s support 
isn’t even integers!)

Normals also have the property that if 𝑋, 𝑌 are independent normals, 
then 𝑋 + 𝑌 is also a normal.



Normalize

To turn X~𝒩(𝜇, 𝜎2) into Y~𝒩(0,1) you want to set

𝑌 =
𝑋−𝜇

𝜎

Why normalize?

The density is a mess. The CDF does not have a pretty closed form.

But we’re going to need the CDF a lot, so…



Table of Standard Normal CDF

The way we’ll evaluate the CDF of a 

normal is to:

1. convert to a standard normal

2. Round the “z-score” to the hundredths 

place.

3. Look up the value in the table.

It’s 2021, we’re using a table?

The table makes sure we have consistent

rounding rules (makes it easier for us to 

debug with you). 

You can’t evaluate this by hand – the “z-

score” can give you intuition right away.



Use the table!

We’ll use the notation Φ(𝑧) to mean 𝐹𝑋(𝑧) where 𝑋~𝒩(0,1).

Let 𝑌~𝒩(5,4) what is ℙ 𝑌 > 9 ?

ℙ 𝑌 > 9

= ℙ
𝑌−5

2
>

9−5

2
we’ve just written the inequality in a weird way.

= ℙ(𝑋 >
9−5

2
) where 𝑋 is 𝒩(0,1).

= 1 − ℙ 𝑋 ≤
9−5

2
= 1 −Φ 2.00 = 1 − 0.97725 = .02275.



More practice

Let 𝑋~𝒩(3, 2).

What is the probability that 1 ≤ 𝑋 ≤ 4



More practice

Let 𝑋~𝒩(3, 2).

What is the probability that 1 ≤ 𝑋 ≤ 4

ℙ 1 ≤ 𝑋 ≤ 4

= ℙ
1−3

2
≤

𝑋−3

2
≤

4−3

2

≈ ℙ −1.41 ≤
𝑋−3

2
≤ .71

= Φ .71 − Φ −1.41

= Φ .71 − 1 − Φ 1.41 = .76115 − 1 − .92073 = .68188.



In real life

What’s the probability of being at most two standard deviations from 
the mean?

= Φ 2 −Φ −2

= Φ 2 − 1 − Φ 2

= .97725 − 1 − .97725 = .9545

You’ll sometimes hear statisticians refer to the “68-95-99.7 rule” which is 
the probability of being within 1,2, or 3 standard deviations of the mean.


