## Linearity of Expectation css32ssming <br> Lecture 12

## Expectation

## Expectation

The "expectation" (or "expected value") of a random variable $X$ is:

$$
\mathbb{E}[X]=\sum_{k} \boldsymbol{k} \cdot \mathbb{P}(X=\boldsymbol{k})
$$

Intuition: The weighted average of values $X$ could take on. Weighted by the probability you actually see them.

## Linearity of Expectation

## Linearity of Expectation

For any two random variables $X$ and $Y$ :

$$
\mathbb{E}[X+Y]=\mathbb{E}[X]+\mathbb{E}[Y]
$$

Note: $X$ and $Y$ do not have to be independent
Extending this to n random variables, $X_{1}, X_{2}, \ldots, X_{n}$

$$
\mathbb{E}\left[X_{1}+X_{2}+\cdots+X_{n}\right]=\mathbb{E}\left[X_{1}\right]+\mathbb{E}\left[X_{2}\right]+\cdots+\mathbb{E}\left[X_{n}\right]
$$

This can be proven by induction.

## Linearity of Expectation - Proof

## Linearity of Expectation

For any two random variables $X$ and $Y$ :

$$
\mathbb{E}[X+Y]=\mathbb{E}[X]+\mathbb{E}[Y]
$$

Note: $X$ and $Y$ do not have to be independent

$$
\begin{aligned}
\mathbb{E}[\boldsymbol{X}+\boldsymbol{Y}] & =\Sigma_{\omega} P(\omega)(X(\omega)+Y(\omega)) \\
& =\Sigma_{\omega} P(\omega) X(\omega)+\Sigma_{\omega} P(\omega) Y(\omega) \\
& =\mathbb{E}[\boldsymbol{X}]+\mathbb{E}[\boldsymbol{Y}]
\end{aligned}
$$

## Linearity of Expectation

## Linearity of Expectation

For any two random variables $X$ and $Y$ :

$$
\mathbb{E}[X+Y]=\mathbb{E}[X]+\mathbb{E}[Y]
$$

More generally, for random variables $X$ and $Y$ and scalars $a, b$ and $c$ :

$$
\mathbb{E}[a \boldsymbol{X}+b \boldsymbol{Y}+c]=a \mathbb{E}[\boldsymbol{X}]+b \mathbb{E}[\boldsymbol{Y}]+c
$$

## Fishy Business

Say you and your friend go fishing everyday.

- You catch $X$ fish, with $\mathbb{E}[X]=3$
- Your friend catches $Y$ fish, with $\mathbb{E}[Y]=7$
- How many fish do both of you bring on an average day?


## Fishy Business

Say you and your friend go fishing everyday.

- You catch $X$ fish, with $\mathbb{E}[X]=3$
- Your friend catches $Y$ fish, with $\mathbb{E}[Y]=7$
- How many fish do both of you bring on an average day?

Let $Z$ be the r.v. representing the total number of fish you both catch

$$
\mathbb{E}[Z]=\mathbb{E}[X+Y]=\mathbb{E}[X]+\mathbb{E}[Y]=3+7=10
$$

## Fishy Business

Say you and your friend go fishing everyday.

- You catch $X$ fish, with $\mathbb{E}[X]=3$
- Your friend catches $Y$ fish, with $\mathbb{E}[Y]=7$
- How many fish do both of you bring on an average day?

Let $Z$ be the r.v. representing the total number of fish you both catch

$$
\mathbb{E}[Z]=\mathbb{E}[X+Y]=\mathbb{E}[X]+\mathbb{E}[Y]=3+7=10
$$

- You can sell each for $\$ 10$, but you need $\$ 15$ for expenses. What is your average profit?


## Fishy Business

Say you and your friend go fishing everyday.


- You catch $X$ fish, with $\mathbb{E}[X]=3$
- Your friend catches $Y$ fish, with $\mathbb{E}[Y]=7$
- How many fish do both of you bring on an average day?

Let $Z$ be the r.v. representing the total number of fish you both catch

$$
\mathbb{E}[Z]=\mathbb{E}[X+Y]=\mathbb{E}[X]+\mathbb{E}[Y]=3+7=10
$$

- You can sell each for $\$ 10$, but you need $\$ 15$ for expenses. What is your average profit?

$$
\mathbb{E}[10 Z-15]=10 \mathbb{E}[Z]-15=100-15=85
$$

## Coin Tosses

If we flip a coin twice, what is the expected number of heads that come up?

## Coin Tosses

If we flip a coin twice, what is the expected number of heads that come up?
Let $X$ be the r.v. representing the total number of heads

$$
p_{X}(x)= \begin{cases}\frac{1}{4} & \text { if } x=0 \\ \frac{1}{2} & \text { if } x=1 \\ \frac{1}{4} & \text { if } x=2\end{cases}
$$

## Coin Tosses

If we flip a coin twice, what is the expected number of heads that come up?
Let $X$ be the r.v. representing the total number of heads

$$
p_{X}(x)= \begin{cases}\frac{1}{4} & \text { if } x=0 \\ \frac{1}{2} & \text { if } x=1 \\ \frac{1}{4} & \text { if } x=2\end{cases}
$$

$\mathbb{E}[\boldsymbol{X}]=\Sigma_{\omega} P(\omega) X(\omega)=\frac{1}{4} \cdot 0+\frac{1}{2} \cdot 1+\frac{1}{4} \cdot 2=1$

## Repeated Coin Tosses

Now what if the probability of flipping a heads was $p$ and that we wanted to find the total number of heads flipped when we flip the coin n times?

If $Y$ is the r.v. representing the total number of heads that come up.

$$
\begin{array}{r}
\mathbb{E}[Y]=\sum_{k=0}^{n} k \cdot \mathbb{P}(Y=k)=\sum_{k=0}^{n} k \cdot\binom{n}{k} p^{k}(1-p)^{n-k} \\
=\sum_{k=1}^{n} k \cdot\binom{n}{k} p^{k}(1-p)^{n-k}
\end{array}
$$

## Repeated Coin Tosses

Now what if the probability of flipping a heads was $p$ and that we wanted to find the total number of heads flipped when we flip the coin n times?

$$
\mathbb{E}[Y]=\sum_{k=0}^{n} k \cdot \mathbb{P}(Y=k)=\sum_{k=0}^{n} k \cdot\binom{n}{k} p^{k}(1-p)^{n-k}
$$

$$
=\sum_{k=1}^{n} k \cdot\binom{n}{k} p^{k}(1-p)^{n-k}
$$

$$
=n p \sum_{k=1}^{n}\binom{n-1}{k-1} p^{k-1}(1-p)^{n-k} \quad\left[k\binom{n}{k}=n\binom{n-1}{k-1}\right]
$$

$$
=n p \sum_{i=0}^{n-1}\binom{n-1}{i} p^{i}(1-p)^{n-1-i}
$$

$$
=n p(p+(1-p))^{n-1}=n p
$$

## Indicator Random Variables

For any event $A$, we can define the indicator random variable $X$ for $A$

$$
X=\left\{\begin{array}{lc}
1 & \text { if event A occurs } \\
0 & \text { otherwise }
\end{array} \begin{array}{c}
\mathbb{P}(X=1)=\mathbb{P}(A) \\
\mathbb{P}(X=0)=1-\mathbb{P}(A)
\end{array}\right.
$$

## Repeated Coin Tosses (contd)

The probability of flipping a heads is $p$ and we wanted to find the total number of heads flipped when we flip the coin n times?

## Repeated Coin Tosses (contd)

The probability of flipping a heads is $p$ and we wanted to find the total number of heads flipped when we flip the coin n times?
Let $X$ be the total number of heads
Let us define $X_{i}$ as follows:

$$
X_{i}=\left\{\begin{array}{l}
1 \\
0
\end{array}\right.
$$

if the ith coin flip is heads otherwise

$$
\begin{gathered}
\mathbb{P}\left(X_{i}=1\right)=p \\
\mathbb{P}\left(X_{i}=0\right)=1-p
\end{gathered}
$$

$$
\mathbb{E}\left[X_{i}\right]=1 \cdot p+0 \cdot(1-p)
$$

## Repeated Coin Tosses (contd)

The probability of flipping a heads is $p$ and we wanted to find the total number of heads flipped when we flip the coin n times?
Let $X$ be the total number of heads
Let us define $X_{i}$ as follows:

$$
X_{i}=\left\{\begin{array}{l}
1 \\
0
\end{array}\right.
$$

if the ith coin flip is heads otherwise

$$
\begin{gathered}
\mathbb{P}\left(X_{i}=1\right)=p \\
\mathbb{P}\left(X_{i}=0\right)=1-p
\end{gathered}
$$

$$
\mathbb{E}\left[X_{i}\right]=1 \cdot p+0 \cdot(1-p)
$$

By Linearity of Expectation, $\mathbb{E}[X]=\mathbb{E}\left[\sum_{i=1}^{n} X_{i}\right]=\sum_{i=1}^{n} \mathbb{E}\left[X_{i}\right]=\mathbb{E}\left[X_{1}\right]+\mathbb{E}\left[X_{2}\right]+\cdots+\mathbb{E}\left[X_{n}\right]=n \boldsymbol{p}$

## Computing complicated expectations

We often use these three steps to solve complicated expectations

1. Decompose: Finding the right way to decompose the random variable into sum of simple random variables

$$
X=X_{1}+X_{2}+\cdots+X_{n}
$$

2. LOE: Apply Linearity of Expectation

$$
\mathbb{E}[X]=\mathbb{E}\left[X_{1}\right]+\mathbb{E}\left[X_{2}\right]+\cdots+\mathbb{E}\left[X_{n}\right]
$$

3. Conquer: Compute the expectation of each $X_{i}$

Often $X_{i}$ are indicator random variables

## Pairs with the same birthday

In a class of $m$ students, on average how many pairs of people have the same birthday?

## Decompose:

## LOE:

## Conquer:

## Pairs with the same birthday

In a class of $m$ students, on average how many pairs of people have the same birthday?
Decompose: Let us define $X$ as the number of pairs with the same birthday Let us define $X_{i j}$ as follows:

$$
X_{i j}=\left\{\begin{array}{l}
1 \\
0
\end{array}\right.
$$

if the i, j have the same bithday $\begin{gathered}\text { otherwise }\end{gathered} \quad X=\Sigma_{i, j}^{\binom{m}{2}} X_{i j}$

$$
\mathbb{E}[X]=\Sigma_{i, j}^{\binom{m}{2}} \mathbb{E}\left[X_{i j}\right]
$$

Conquer:

$$
\begin{aligned}
& \mathbb{E}\left[X_{i j}\right]= P\left(X_{i j}=1\right)=\frac{365}{365 \cdot 365}=\frac{1}{365} \\
& \mathbb{E}[X]=\binom{m}{2} \cdot \mathbb{E}\left[X_{i j}\right]=\binom{m}{2} \cdot \frac{1}{365}
\end{aligned}
$$

## Rotating the table

n people are sitting around a circular table. There is a name tag in each place. Nobody is sitting in front of their own name tag.

Rotate the table by a random number $k$ of positions between 1 and $n-1$ (equally likely)
$X$ is the number of people that end up in front of their own name tag. Find $\mathbb{E}[X]$.
Decompose:

LOE:

Conquer:

## Rotating the table

n people are sitting around a circular table. There is a name tag in each place. Nobody is sitting in front of their own name tag.

Rotate the table by a random number $k$ of positions between 1 and $n-1$ (equally likely)
$X$ is the number of people that end up in front of their own name tag. Find $\mathbb{E}[X]$.
Decompose: Let us define $X_{i}$ as follows:
$X_{i}=\left\{\begin{array}{rr}1 & \text { if person } \mathrm{i} \text { its infront of their own name tag } \\ 0 & \text { otherwise }\end{array} \quad X=\sum_{i=1}^{n} X_{i}\right.$

## LOE:

$$
\mathbb{E}[X]=\sum_{i=1}^{n} \mathbb{E}\left[X_{i}\right]
$$

## Conquer:

$$
\mathbb{E}\left[X_{i}\right]=P\left(X_{i}=1\right)=\frac{1}{n-1} \quad \mathbb{E}[X]=n \cdot \mathbb{E}\left[X_{i}\right]=\frac{n}{n-1}
$$

## Frogger

A frog starts on a 1-dimensional number line at 0 . At each second, independently, the frog takes a unit step right with probability $p_{1}$, to the left with probability $p_{2}$, and doesn't move with probability $p_{3}$, where $p_{1}+p_{2}+p_{3}=1$. After 2 seconds, let $X$ be the location of the frog. Find $\mathbb{E}[X]$.

## Frogger - Brute Force

A frog starts on a 1-dimensional number line at 0 . At each second, independently, the frog takes a unit step right with probability $p_{R}$, to the left with probability $p_{L}$, and doesn't move with probability $p_{S}$, where $p_{L}+p_{R}+p_{S}=1$. After 2 seconds, let $X$ be the location of the frog. Find $\mathbb{E}[X]$.
$p_{X}(x)=\left\{\begin{array}{lr}p_{L}^{2} & x=-2 \\ 2 p_{L} p_{S} & x=-1 \\ 2 p_{L} p_{R}+p_{S}^{2} & x=0 \\ 2 p_{R} p_{S} & x=1 \\ p_{R}^{2} & x=2 \\ 0 & \text { otherwise }\end{array}\right.$

$$
\mathbb{E}[\boldsymbol{X}]=\Sigma_{\omega} P(\omega) X(\omega)=(-2) p_{L}^{2}+(-1) 2 p_{L} p_{S}+0 \cdot\left(2 p_{L} p_{R}+p_{S}^{2}\right)+(1) 2 p_{R} p_{S}+(2) p_{R}^{2}=\mathbf{2}\left(\boldsymbol{p}_{R}-\boldsymbol{p}_{L}\right)
$$

## Frogger - LOE

A frog starts on a 1-dimensional number line at 0 . At each second, independently, the frog takes a unit step right with probability $p_{R}$, to the left with probability $p_{L}$, and doesn't move with probability $p_{S}$, where $p_{L}+p_{R}+p_{S}=1$. After 2 seconds, let $X$ be the location of the frog. Find $\mathbb{E}[X]$.

Let us define $X_{i}$ as follows:

$$
X_{i}=\left\{\begin{array}{cc}
-1 & \text { if the frog moved left on the } i \text { th step } \\
0 & \text { otherwise } \\
1 & \text { if the frog moved right on the } i \text { th step }
\end{array}\right.
$$

$$
\mathbb{E}\left[X_{i}\right]=-1 \cdot p_{L}+1 \cdot p_{R}+0 \cdot p_{S}=\left(p_{R}-p_{L}\right)
$$

By Linearity of Expectation,

$$
\mathbb{E}[X]=\mathbb{E}\left[\sum_{i=1}^{2} X_{i}\right]=\sum_{i=1}^{2} \mathbb{E}\left[X_{i}\right]=2\left(\boldsymbol{p}_{R}-\boldsymbol{p}_{L}\right)
$$

