Expectation

Announcements

HW2 was just released
There's a post on Ed about a common bug in HW2 P6. Please read that before filing a regrade request on that problem.

HW3 due tonight
Remember you have late days. Particularly if you run into debugging issues with the programming part.
HW4 out (late) tonight

Try it yourself

What is the CDF of X where
X be the largest value among the three balls. (Drawing 3 of the 20 without replacement)

Try it yourself

What is the CDF of X where
X be the largest value among the three balls. (Drawing 3 of the 20 without replacement)

$$
F_{X}(x)=\left\{\begin{array}{c}
0 \\
\binom{|x|}{3} /\binom{20}{3}
\end{array}\right.
$$

$$
\begin{gathered}
\text { if } x<3 \\
\text { if } 3 \leq x \leq 20 \\
\text { otherwise }
\end{gathered}
$$

Try it yourself

What is the CDF of X where
X be the largest value among the three balls. (Drawing 3 of the 20 without replacement)
$F_{X}(x)=\left\{\begin{array}{c}0 \\ \binom{|x|}{3} /\binom{20}{3}\end{array}\right.$

$$
\begin{gathered}
\text { if } x<3 \\
\text { if } 3 \leq x \leq 20 \\
\text { otherwise }
\end{gathered}
$$

Good checks: Is $F_{X}(\infty)=1$? If not, something is wrong.
Is $F_{X}(x)$ increasing? If not something is wrong.
Is $F_{X}(x)$ defined for all real number inputs? If not something is wrong.

Two descriptions

PROBABILITY MASS FUNCTION

Defined for all \mathbb{R} inputs.
Usually has "0 otherwise" as an extra case.

$$
\begin{aligned}
& \sum_{x} f_{X}(x)=1 \\
& 0 \leq f_{X}(x) \leq 1
\end{aligned}
$$

$$
\sum_{z: z \leq x} f_{X}(z)=F_{X}(x)
$$

CUMULATIVE DISTRIBUTION FUNCTION

Defined for all \mathbb{R} inputs.
Usually has " 0 otherwise" and 1 otherwise" extra cases
Non-decreasing function

$$
0 \leq F_{X}(x) \leq 1
$$

$$
\begin{aligned}
& \lim _{x \rightarrow-\infty} F_{X}(x)=0 \\
& \lim _{x \rightarrow \infty} F_{X}(x)=1
\end{aligned}
$$

Expectation

Expectation

Expectation

The "expectation" (or "expected value") of a random variable X is:

$$
\mathbb{E}[X]=\sum_{k} \boldsymbol{k} \cdot \mathbb{P}(X=k)
$$

Intuition: The weighted average of values X could take on.
Weighted by the probability you actually see them.

Example 1

Flip a fair coin twice (independently)
Let X be the number of heads.
$\Omega=\{T T, T H, H T, H H\}, \mathbb{P}()$ is uniform measure.

$$
\mathbb{E}[X]=\frac{1}{4} \cdot 0+\frac{1}{2} \cdot 1+\frac{1}{4} \cdot 2=0+\frac{1}{2}+\frac{1}{2}=1 .
$$

Example 2

You roll a biased die.
It shows a 6 with probability $\frac{1}{3^{\prime}}$ and $1, \ldots, 5$ with probability $2 / 15$ each.
Let X be the value of the die. What is $\mathbb{E}[X]$?

$$
\begin{aligned}
& \frac{1}{3} \cdot 6+\frac{2}{15} \cdot 5+\frac{2}{15} \cdot 4+\frac{2}{15} \cdot 3+\frac{2}{15} \cdot 2+\frac{2}{15} \cdot 1 \\
& =2+\frac{2(5+4+3+2+1)}{15}=2+\frac{30}{15}=4
\end{aligned}
$$

$\mathbb{E}[X]$ is not just the most likely outcome!

Try it yourself
Let X be the result shown on a fair die. What is $\mathbb{E}[X]$?

Let Y be the sum of two (independent) fair die rolls. What is $\mathbb{E}[Y]$?

Fill out the poll everywhere so Robbie knows how long to explain Go to pollev.com/cse312

Try it yourself

Let X be the result shown on a fair die. What is $\mathbb{E}[X]$
$6 \cdot \frac{1}{6}+5 \cdot \frac{1}{6}+4 \cdot \frac{1}{6}+3 \cdot \frac{1}{6}+2 \cdot \frac{1}{6}+1 \cdot \frac{1}{6}$
$=\frac{21}{6}=3.5$
$\mathbb{E}[X]$ is not necessarily a possible outcome!
That's ok, it's an average!

Try it yourself

$$
\begin{aligned}
& \mathbb{E}[Y]= \\
& \frac{1}{36} \cdot 2+\frac{2}{36} \cdot 3+\frac{3}{36} \cdot 4+\frac{4}{36} \cdot 5+\frac{5}{36} \cdot 6+\frac{6}{36} \cdot 7+\frac{5}{36} \cdot 8+\frac{4}{36} \cdot 9+\frac{3}{36} \cdot 10+\frac{2}{36} \cdot 11+\frac{1}{36} \cdot 12 \\
& =7
\end{aligned}
$$

$\mathbb{E}[Y]=2 \mathbb{E}[X]$. That's not a coincidence...we'll talk about why next time.

Subtle but Important

X is random. You don't know what it is (at least until you run the experiment).
$\mathbb{E}[X]$ is not random. It's a number.
You don't need to run the experiment to know what it is.

More Independence

Independence of events

Recall the definition of independence of events:

Independence

Two events A, B are independent if

$$
\mathbb{P}(A \cap B)=\mathbb{P}(A) \cdot \mathbb{P}(B)
$$

Independence for 3 or more events

For three or more events, we need two kinds of independence

Pairwise Independence

Events $A_{1}, A_{2}, \ldots, A_{n}$ are pairwise independent if

$$
\mathbb{P}\left(\boldsymbol{A}_{\boldsymbol{i}} \cap \boldsymbol{A}_{\boldsymbol{j}}\right)=\mathbb{P}\left(\boldsymbol{A}_{\boldsymbol{i}}\right) \cdot \mathbb{P}\left(\boldsymbol{A}_{\boldsymbol{j}}\right) \text { for all } \boldsymbol{i}, \boldsymbol{j}
$$

Mutual Independence

Events $A_{1}, A_{2}, \ldots, A_{n}$ are mutually independent if

$$
\mathbb{P}\left(\boldsymbol{A}_{i_{1}} \cap A_{i_{2}} \cap \cdots \cap A_{i_{k}}\right)=\mathbb{P}\left(\boldsymbol{A}_{i_{1}}\right) \cdot \mathbb{P}\left(\boldsymbol{A}_{i_{2}}\right) \cdots \mathbb{P}\left(\boldsymbol{A}_{i_{k}}\right)
$$ for every subset $\left\{i_{1}, i_{2}, \ldots, i_{k}\right\}$ of $\{1,2, \ldots, n\}$.

Pairwise Independence vs. Mutual Independence

Roll two fair dice (one red one blue) independently
$R="$ red die is $3 "$
$B="$ blue die is $5 "$
$S=$ "sum is 7"

How should we describe these events?

Pairwise Independence

R, B, S are pairwise independent
$\mathbb{P}(R \cap B) ?=\mathbb{P}(R) \mathbb{P}(B)$
$\frac{1}{36}=\frac{1}{6} \cdot \frac{1}{6}$ Yes! (These are also independent by the problem statement)
$\mathbb{P}(R \cap S) ?=\mathbb{P}(R) \mathbb{P}(S)$
$\frac{1}{36} ?=\frac{1}{6} \cdot \frac{1}{6}$ Yes!
$\mathbb{P}(B \cap S) ?=\mathbb{P}(B) \mathbb{P}(S)$
$\frac{1}{36} ?=\frac{1}{6} \cdot \frac{1}{6} \mathrm{Yes}$!

Since all three pairs are independent, we say the random variables are pairwise independent.

Mutual Independence

R, B, S are not mutually independent.
$\mathbb{P}(R \cap B \cap S)=0$; if the red die is 3 , and blue die is 5 then the sum is 8 (so it can't be 7)
$\mathbb{P}(R) \mathbb{P}(B) \mathbb{P}(S)=\left(\frac{1}{6}\right)^{3}=\frac{1}{216} \neq 0$

Checking Mutual Independence

It's not enough to check just $\mathbb{P}(A \cap B \cap C)$ either.
Roll a fair 8-sided die.
Let A be $\{1,2,3,4\}$
B be $\{2,4,6,8\}$
C be $\{2,3,5,7\}$
$\mathbb{P}(A \cap B \cap C)=\mathbb{P}(\{2\})=\frac{1}{8}$
$\mathbb{P}(A) \mathbb{P}(B) \mathbb{P}(C)=\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}=\frac{1}{8}$

Checking Mutual Independence

It's not enough to check just $\mathbb{P}(A \cap B \cap C)$ either.
Roll a fair 8 -sided die.
Let A be $\{1,2,3,4\}$
B be $\{2,4,6,8\}$
C be $\{2,3,5,7\}$
$\mathbb{P}(A \cap B \cap C)=\mathbb{P}(\{2\})=\frac{1}{8}$
$\mathbb{P}(A) \mathbb{P}(B) \mathbb{P}(C)=\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}=\frac{1}{8}$
But A and B aren't independent (nor are B, C; though A and C are independent). Because there's a subset that's not independent, A, B, C are not mutually independent.

Checking Mutual Independence

To check mutual independence of events:
Check every subset.

To check pairwise independence of events:
Check every subset of size two.

Independence of Random Variables

That's for events...what about random variables?

Independence (of random variables)

$$
\begin{aligned}
& X \text { and } Y \text { are independent if for all } k, \ell \\
& \mathbb{P}(X=k, Y=\ell)=\mathbb{P}(X=k) \mathbb{P}(Y=\ell)
\end{aligned}
$$

We'll often use commas instead of \cap symbol.

Independence of Random Variables

The "for all values" is important.

We say that the event "the sum is 7 " is independent of "the red die is 5 " What about $S=$ "the sum of two dice" and $R=$ "the value of the red die"

Independence of Random Variables

The "for all values" is important.

We say that the event "the sum is 7 " is independent of "the red die is 5 " What about $S=$ "the sum of two dice" and $R=$ "the value of the red die"

NOT independent.
$\mathbb{P}(S=2, R=5) \neq \mathbb{P}(S=2) \mathbb{P}(R=5)$ (for example)

Independence of Random Variables

Flip a coin independently $2 n$ times.
Let X be "the number of heads in the first n flips."
Let Y be "the number of heads in the last n flips."
X and Y are independent.

Mutual Independence for RVs

A little simpler to write down than for events

Mutual Independence (of random variables)

$$
\begin{gathered}
X_{1}, X_{2}, \ldots, X_{n} \text { are mutually independent if for all } x_{1}, x_{2}, \ldots, x_{n} \\
\mathbb{P}\left(X_{1}=x_{1}, X_{2}=x_{2}, \ldots, X_{n}=x_{n}\right)=\mathbb{P}\left(X_{1}=x_{1}\right) \mathbb{P}\left(X_{2}=x_{2}\right) \cdots \mathbb{P}\left(X_{n}=x_{n}\right)
\end{gathered}
$$

DON'T need to check all subsets for random variables...
But you do need to check all values (all possible x_{i}) still.

Extra Practice

More Practice

Suppose you flip a coin until you see a heads for the first time.
Let X be the number of trials (including the heads)

What is the pmf of X ?
The cdf of X ?
$\mathbb{E}[X]$?

More Practice

Suppose you flip a coin until you see a heads for the first time. Let X be the number of trials (including the heads)

What is the pmf of X ? $f_{X}(x)=1 / 2^{x}$ for $x \in \mathbb{Z}^{+}, 0$ otherwise The cdf of X ? $F_{X}(x)=1-1 / 2^{[x]}$ for $x \geq 0,0$ for $x<0$. $\mathbb{E}[X] ? \sum_{i=1}^{\infty} \frac{i}{2^{i}}=2$

More Random Variable Practice

Roll a fair die n times. Let X be the number of rolls that are $5 s$ or $6 s$.

What is the pmf?
Don't try to write the CDF...it's a mess...
Or try for a few minutes to realize it isn't nice.
What is the expectation?

More Random Variable Practice

Roll a fair die n times. Let Z be the number of rolls that are $5 s$ or $6 s$.

What's the probability of getting exactly k 5's/6's? Well we need to know which k of the n rolls are 5 's/6's. And then multiply by the probability of getting exactly that outcome
$f_{Z}(z)=\left\{\begin{array}{lr}\binom{n}{z} \cdot\left(\frac{1}{3}\right)^{z}\left(\frac{2}{3}\right)^{n-z} & \text { if } z \in Z, 0 \leq z \leq n \\ 0 & \text { otherwise }\end{array}\right.$
Expectation formula is a mess. If you plug it into a calculator you'll get a nice, clean simplification: $n / 3$.

