

Announcements

We clarified problem 5 on HW3 (details on edge cases, like whether q can be 1).

Implicitly defining Ω

We've often skipped an explicit definition of Ω.
Often $|\Omega|$ is infinite, so we really couldn't write it out (even in principle).

How would that happen?

Flip a fair coin (independently each time) until you see your first tails. what is the probability that you see at least 3 heads?

An infinite process.

Ω is infinite.

A sequential process is also going to be infinite...
But the tree is "self-similar" To know what the next step looks like, you only need to look back a finite number of steps.
From every node, the children look identical (H with probability $1 / 2$, continue pattern; T to a leaf with probability $1 / 2$)

Finding \mathbb{P} (at least 3 heads)

Method 1: infinite sum.
Ω includes $H^{i} T$ for every i. Every such outcome has probability $1 / 2^{i+1}$ What outcomes are in our event?
$\sum_{i=3}^{\infty} 1 / 2^{i+1}=\frac{\frac{1}{2^{4}}}{1-1 / 2}=\frac{1}{8}$
Infinite geometric series, where common ratio is between -1 and 1 has closed form $\frac{\text { first term }}{1-\text { ratio }}$

Finding \mathbb{P} (at least 3 heads)

Method 2:

Calculate the complement
$\mathbb{P}($ at most 2 heads $)=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}$
$\mathbb{P}($ at least 3 heads $)=1-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}\right)=\frac{1}{8}$

Random Variables

Random Variable

What's a random variable?
Formally

Random Variable

$X: \Omega \rightarrow \mathbb{R}$ is a random variable $X(\omega)$ is the summary of the outcome ω

Informally: A random variable is a way to summarize the important (numerical) information from your outcome.

The sum of two dice

EVENTS

We could define
$E_{2}=$ "sum is 2"
$E_{3}=$ "sum is $3 "$
$E_{12}=$ "sum is $12 "$

And ask "which event occurs"?

RANDOM VARIABLE

$X: \Omega \rightarrow \mathbb{R}$
X is the sum of the two dice.

More random variables

From one sample space, you can define many random variables.

Roll a fair red die and a fair blue die

Let D be the value of the red die minus the blue die $D(4,2)=2$
Let S be the sum of the values of the dice $S(4,2)=6$
Let M be the maximum of the values $M(4,2)=4$

Support

The "support" (aka "the range") is the set of values X can actually take.

We called this the "image" in 311.
D (difference of red and blue) has support $\{-5,-4,-3, \ldots, 4,5\}$
S (sum) has support $\{2,3, \ldots, 12\}$
What is the support of M (max of the two dice)

Probability Mass Function

Often we're interested in the event $\{\omega: X(\omega)=x\}$

Which is the event...that $X=x$.
We'll write $\mathbb{P}(X=x)$ to describe the probability of that event
So $\mathbb{P}(S=2)=\frac{1}{36^{\prime}} \mathbb{P}(S=7)=\frac{1}{6}$

The function that tells you $\mathbb{P}(X=x)$ is the "probability mass function" We'll often write $f_{X}(x)$ for the pmf.

Partition

A random variable partitions Ω.

	D2=1	D2=2	D2=3	D2=4	D2=5	D2=6
D1=1	$(1,1)$	$(1,2)$	$(1,3)$	$(1,4)$	$(1,5)$	(1.6)
D1=2	$(2,1)$	$(2,2)$	$(2,3)$	$(2,4)$	$(2,5)$	$(2,6)$
D1=3	$(3,1)$	$(3,2)$	$(3,3)$	$(3,4)$	$(3,5)$	$(3,6)$
D1=4	$(4,1)$	$(4,2)$	$(4,3)$	$(4,4)$	$(4,5)$	$(4,6)$
D1=5	$(5,1)$	$(5,2)$	$(5,3)$	$(5,4)$	$(5,5)$	$(5,6)$
D1=6	$(6,1)$	$(6,2)$	$(6,3)$	$(6,4)$	$(6,5)$	$(6,6)$

Try It Yourself

There are 20 balls, numbered $1,2, \ldots, 20$ in an urn.
You'll draw out a size-three subset. (i.e. without replacement)
$\Omega=\{$ size three subsets of $\{1, \ldots, 20\}\}, \mathbb{P}()$ is uniform measure.
Let X be the largest value among the three balls.

If outcome is $\{4,2,10\}$ then $X=10$.
Write down the pmf of X

Fill out the poll everywhere so Robbie knows how long to explain Go to pollev.com/cse312

Try It Yourself

There are 20 balls, numbered $1,2, \ldots, 20$ in an urn.
You'll draw out a size-three subset. (i.e. without replacement) Let X be the largest value among the three balls.

$$
f_{X}(x)=\left\{\begin{array}{lr}
\binom{x-1}{2} /\binom{20}{3} \text { if } x \in \mathbb{N}, 3 \leq x \leq 20 \\
0 & \text { otherwise }
\end{array}\right.
$$

Good check: if you sum up $f_{X}(x)$ do you get 1? Good check: is $f_{X}(x) \geq 0$ for all x ? Is it defined for all x ?

Describing a Random Variable

The most common way to describe a random variable is the PMF. But there's a second representation:

The cumulative distribution function (CDF) gives the probability $X \leq x$ More formally, $\mathbb{P}(\{\omega: X(\omega) \leq x\})$
Often written $F_{X}(x)=\mathbb{P}(X \leq x)$

$$
F_{X}(x)=\sum_{i: i \leq x} f_{X}(i)
$$

Try it yourself

What is the CDF of X where
X be the largest value among the three balls. (Drawing 3 of the 20 without replacement)

Try it yourself

What is the CDF of X where
X be the largest value among the three balls. (Drawing 3 of the 20 without replacement)

$$
F_{X}(x)=\left\{\begin{array}{c}
0 \\
\binom{|x|}{3} /\binom{20}{3} \\
1
\end{array}\right.
$$

$$
\begin{gathered}
\text { if } x<3 \\
\text { if } 3 \leq x \leq 20 \\
\text { otherwise }
\end{gathered}
$$

Try it yourself

What is the CDF of X where
X be the largest value among the three balls. (Drawing 3 of the 20 without replacement)
$F_{X}(x)=\left\{\begin{array}{c}0 \\ \binom{|x|}{3} /\binom{20}{3}\end{array}\right.$

$$
\begin{gathered}
\text { if } x<3 \\
\text { if } 3 \leq x \leq 20 \\
\text { otherwise }
\end{gathered}
$$

Good checks: Is $F_{X}(\infty)=1$? If not, something is wrong.
Is $F_{X}(x)$ increasing? If not something is wrong.
Is $F_{X}(x)$ defined for all real number inputs? If not something is wrong.

Two descriptions

PROBABILITY MASS FUNCTION

Defined for all \mathbb{R} inputs.
Usually has "0 otherwise" as an extra case.

$$
\begin{aligned}
& \sum_{x} f_{X}(x)=1 \\
& 0 \leq f_{X}(x) \leq 1
\end{aligned}
$$

$\sum_{z: z \leq x} f_{X}(z)=F_{X}(x)$

CUMULATIVE DISTRIBUTION FUNCTION

Defined for all \mathbb{R} inputs.
Usually has " 0 otherwise" and 1 otherwise" extra cases
Non-decreasing function

$$
0 \leq F_{X}(x) \leq 1
$$

$$
\begin{aligned}
& \lim _{x \rightarrow-\infty} F_{X}(x)=0 \\
& \lim _{x \rightarrow \infty} F_{X}(x)=1
\end{aligned}
$$

More Random Variable Practice

Roll a fair die n times. Let X be the number of rolls that are $5 s$ or $6 s$.

What is the pmf?
Don't try to write the CDF...it's a mess...
Or try for a few minutes to realize it isn't nice.

More Random Variable Practice

Roll a fair die n times. Let Z be the number of rolls that are $5 s$ or $6 s$.

What's the probability of getting exactly k 5's/6's? Well we need to know which k of the n rolls are 5 's/6's. And then multiply by the probability of getting exactly that outcome

$$
f_{Z}(z)=\left\{\begin{array}{lr}
\binom{n}{z} \cdot\left(\frac{1}{3}\right)^{z}\left(\frac{2}{3}\right)^{n-z} & \text { if } z \in Z, 0 \leq z \leq n \\
0 & \text { otherwise }
\end{array}\right.
$$

More Practice: Infinite sequential processes

Infinite sequential process

In volleyball, sets are played first team to

- Score 25 points
- Lead by at least 2

At the same time wins a set.
Suppose a set is 23-23. Your team wins each point independently with probability p. What is the probability your team wins the set?

Sequential Process

$\mathbb{P}($ win from even $)=p^{2}+2 p(1-p) \mathbb{P}($ win from even $)$

Sequential Process

$\mathbb{P}($ win from even $)=p^{2}+2 p(1-p) \mathbb{P}($ win from even $)$

$$
\begin{gathered}
x-x\left[2 p-p^{2}\right]=p^{2} \\
x\left[1-2 p+p^{2}\right]=p^{2} \\
x=\frac{p^{2}}{p^{2}-2 p+1}
\end{gathered}
$$

