
Section 9: Solutions

Review of Main Concepts

• Realization/Sample: A realization/sample x of a random variable X is the value that is actually observed.

• Likelihood: Let x1, . . . xn be iid realizations from probability mass function pX(x ; θ) (ifX discrete) or density
fX(x ; θ) (if X continuous), where θ is a parameter (or a vector of parameters). We define the likelihood
function to be the probability of seeing the data.

If X is discrete:

L (x1, . . . , xn | θ) =
n∏

i=1

pX (xi | θ)

If X is continuous:

L (x1, . . . , xn | θ) =
n∏

i=1

fX (xi | θ)

• Maximum Likelihood Estimator (MLE): We denote the MLE of θ as θ̂MLE or simply θ̂, the parameter (or
vector of parameters) that maximizes the likelihood function (probability of seeing the data).

θ̂MLE = argmax
θ

L (x1, . . . , xn | θ) = argmax
θ

lnL (x1, . . . , xn | θ)

• Log-Likelihood: We define the log-likelihood as the natural logarithm of the likelihood function. Since the
logarithm is a strictly increasing function, the value of θ that maximizes the likelihood will be exactly the same
as the value that maximizes the log-likelihood.

If X is discrete:

lnL (x1, . . . , xn | θ) =
n∑

i=1

ln pX (xi | θ)

If X is continuous:

lnL (x1, . . . , xn | θ) =
n∑

i=1

ln fX (xi | θ)

• Bias: The bias of an estimator θ̂ for a true parameter θ is defined as Bias
(
θ̂, θ
)
= E[θ̂]− θ. An estimator θ̂ of

θ is unbiased iff Bias
(
θ̂, θ
)
= 0, or equivalently E[θ̂] = θ.

• Steps to find the maximum likelihood estimator, θ̂:

(a) Find the likelihood and log-likelihood of the data.

(b) Take the derivative of the log-likelihood and set it to 0 to find a candidate for the MLE, θ̂.

(c) Take the second derivative and show that θ̂ indeed is a maximizer, that ∂2L
∂θ2 < 0 at θ̂. Also ensure that it

is the global maximizer: check points of non-differentiability and boundary values.

1. Mystery Dish!

A fancy new restaurant has opened up which features only 4 dishes. The unique feature of dining here is that they
will serve you any of the four dishes randomly according to the following probability distribution: give dish A with
probability 0.5, dish B with probability θ, dish C with probability 2θ, and dish D with probability 0.5− 3θ

Each diner is served a dish independently. Let xA be the number of people who received dish A, xB the number of
people who received dish B, etc, where xA+xB+xC +xD = n. Find the MLE for θ, θ̂. Solution:
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The data tells us, for each diner in the restaurant, what their dish was. We begin by computing the likelihood of
seeing the given data given our parameter θ. Because each diner is assigned a dish independently, the likelihood
is equal to the product over diners of the chance they got the particular dish they got, which gives us:

L(x|θ) = 0.5xAθxB (2θ)xC (0.5− 3θ)xD

From there, we just use the MLE process to get the log-likelihood, take the first derivative, set it equal to 0, and
solve for θ̂.

lnL(x|θ) = xA ln(0.5) + xB ln(θ) + xC ln(2θ) + xD ln(0.5− 3θ)

∂

∂θ
lnL(x|θ) = xB

θ
+

xC

θ
− 3xD

0.5− 3θ

xB

θ̂
+

xC

θ̂
− 3xD

0.5− 3θ̂
= 0

Solving yields θ̂ = xB+xC

6(xB+xC+xD) .

2. A Red Poisson

Suppose that x1, . . . , xn are i.i.d. samples from a Poisson(θ) random variable, where θ is unknown. Find the MLE
of θ. Solution:

Because each Poisson RV is i.i.d., the likelihood of seeing that data is just the PMF of the Poisson distribution
multiplied together for every xi. From there, take the log-likelihood, then the first derivative, set it equal to 0
and solve for for θ̂.

L (x1, . . . , xn | θ) =

n∏
i=1

e−θ θ
xi

xi!

lnL (x1, . . . , xn | θ) =

n∑
i=1

[−θ − ln(xi!) + xi ln(θ)]

∂

∂θ
lnL (x1, . . . , xn | θ) =

n∑
i=1

[
−1 +

xi

θ

]
−n+

Σn
i=1xi

θ̂
= 0

θ̂ =
Σn

i=1xi

n

3. Independent Shreds, You Say?

You are given 100 independent samples x1, x2, . . . , x100 from Bernoulli(θ), where θ is unknown. (Each sample is
either a 0 or a 1). These 100 samples sum to 30. You would like to estimate the distribution’s parameter θ. Give
all answers to 3 significant digits.

(a) What is the maximum likelihood estimator θ̂ of θ? Solution:

Note that Σi∈[n]xi = 30, as given in the problem spec. Therefore, there are 30 1s and 70 0s. (Note that
they come in some specific order.) Therefore, we can setup L as follows, because there is a θ chance of
getting a 1, and a (1− θ) chance of getting a 0 and they are each i.i.d. From there, take the log-likelihood,
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then the first derivative, set it equal to 0 and solve for for θ̂.

L (x1, . . . , xn | θ) = (1− θ)70θ30

lnL (x1, . . . , xn | θ) = 70 ln (1− θ) + 30 ln θ
∂

∂θ
lnL (x1, . . . , xn | θ) = − 70

1− θ
+

30

θ

− 70

1− θ̂
+

30

θ̂
= 0

30

θ̂
=

70

1− θ̂

30− 30θ̂ = 70θ̂

θ̂ =
30

100

(b) Is θ̂ an unbiased estimator of θ? Solution:

An estimator is unbiased if the expectation of the estimator is equal to the original parameter, i.e.: E[θ̂] = θ.
Setting up the expectation of our estimator and plugging it in for the generic case, we get the following,
which we can then reduce with linearity of expectation:

E[θ̂] = E

[
1

100

100∑
i=1

Xi

]

=
1

100

100∑
i=1

E [Xi]

=
1

100
· 100θ = θ.

so it is unbiased.

4. Y Me?

Let y1, y2, ...yn be i.i.d. samples of a random variable with density function

fY (y|θ) =
1

2θ
exp

(
−|y|

θ

)
.

Find the MLE for θ in terms of |yi| and n. Solution:

Since the samples are i.i.d., the likelihood of seeing n samples of them is just their PDFs multiplied together.
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From there, take the log-likelihood, then the first derivative, set it equal to 0 and solve for for θ̂.

L (y1, . . . , yn | θ) =

n∏
i=1

1

2θ
exp(−|yi|

θ
)

lnL (y1, . . . , yn | θ) =

n∑
i=1

[
− ln 2− ln θ − |yi|

θ

]
∂

∂θ
lnL (y1, . . . , yn | θ) =

n∑
i=1

[
−1

θ
+

|yi|
θ2

]
n∑

i=1

[
−1

θ̂
+

|yi|
θ̂2

]
= 0

−n

θ̂
+

Σn
i=1|yi|
θ̂2

= 0

θ̂ =
Σn

i=1|yi|
n

5. A biased estimator

In class, we showed that the maximum likelihood estimate of the variance θ2 of a normal distribution (when both
the true mean µ and true variance σ2 are unknown) is what’s called the population variance. That is

θ̂2 =

(
1

n

n∑
i=1

(xi − θ̂1)
2)

)

where θ̂1 = 1
n

∑n
i=1 xi is the MLE of the mean. Is θ̂2 unbiased?

Solution:

Let X = 1
n

∑n
i=1 Xi. Then

E(θ̂2) = E

(
1

n

n∑
i=1

(Xi −X)2

)
= E

(
1

n

n∑
i=1

(X2
i − 2XiX +X

2
)

)

which by linearity of expectation (and distributing the sum) is

=
1

n

n∑
i=1

E(X2
i )− E

(
2

n
X

n∑
i=1

Xi

)
+ E(X

2
)

=
1

n

n∑
i=1

E(X2
i )− 2E(X

2
) + E(X

2
)

=
1

n

n∑
i=1

E(X2
i )− E(X

2
). (∗∗)

We know that for any random variable Y , since V ar(Y ) = E(Y 2)− (E(Y ))2 it holds that

E(Y 2) = V ar(Y ) + (E(Y ))2.

Also, we have E(Xi) = µ, V ar(Xi) = σ2 ∀i and E(X) = µ, V ar(X) = σ2

n . Combining these facts, we get

E(X2
i ) = σ2 + µ2 ∀i and E(X

2
) =

σ2

n
+ µ2.
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Substituting these equations into (**) we get

E

(
1

n

n∑
i=1

(Xi −X)2)

)
=

1

n

n∑
i=1

E(X2
i )− E(X

2
) = σ2 + µ2 −

(
σ2

n
+ µ2

)
=

(
1− 1

n

)
σ2.

Thus θ̂2 is not unbiased.
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