CSE 312
 Foundations of Computing II

Lecture 9: Linearity of Expectation

w
PAUL G. ALLEN SCHOOL
OF COMPUTER SCIENCE \& ENGINEERING

Anna R. Karlin

Slide Credit: Based on Stefano Tessaro’s slides for 312 19au incorporating ideas from Alex Tsun, Rachel Lin, Hunter Schafer \& myself ©

Last Class:

- Random Variables
- Probability Mass Function (PMF)
- Cumulative Distribution Fn (CDF)
- Expectation

Today:

- Recap
- Linearity of Expectation
- Indicator Random Variables

Reminder: Random Variables

Definition. A random variable (RV) defined on a probability space (Ω, \mathbb{P}) is a function $X: \Omega \rightarrow \mathbb{R}$.

The set of values that X can take on is called its range/support Ω_{X}

$$
\left\{X=x_{i}\right\} \xlongequal{\text { def }}\left\{\omega \in \Omega \mid X(\omega)=x_{i}\right\}
$$

Random variables partition the sample space.

Coin flipping again

Suppose we flip a coin independently n times with probability p of coming up Heads each time. Let the r.v. Z be the number of Heads in the n coin flips.

Probability Mass Function (pmf) and Cumulative Distribution Function (CDF)

Definitions.

For a RV $X: \Omega \rightarrow \mathbb{R}$, the probability mass function (pmf) of X specifies for any real number x, the probability that $X=x$.

$$
\mathrm{p}_{X}(x)=\operatorname{Pr}(X=x)=\mathbb{P}(\{\omega \in \Omega \mid X(\omega)=x\})
$$

$$
\sum_{x \in \Omega_{X}} \mathbb{P}(X=x)=1
$$

For a RV $X: \Omega \rightarrow \mathbb{R}$, the cumulative distribution function of X specifies for any real number x, the probability that $X \leq x$.

$$
\mathrm{F}_{X}(x)=\operatorname{Pr}(X \leq x)
$$

Coin flipping again

Suppose we flip a coin independently n times with probability p of coming up Heads each time. Let the r.v. Z be the number of Heads in the n coin flips. What is the p.m.f. of Z ?

Expectation of Random Variable

Definition. Given a discrete $\operatorname{RV} X: \Omega \rightarrow \mathbb{R}$, the expectation or expected value of X is

$$
\mathrm{E}[X]=\sum_{\omega \in \Omega} X(\omega) \cdot \operatorname{Pr}(\omega)
$$

or equivalently

$$
\mathrm{E}[X]=\sum_{x \in \Omega_{\mathrm{X}}} x \cdot \operatorname{Pr}(X=x)
$$

Intuition: "Weighted average" of the possible outcomes (weighted by probability)

Coin flipping again

Suppose we flip a coin independently n times with probability p of coming up Heads each time. Let the r.v. Z be the number of Heads in the n coin flips. What is the $\mathbb{E}(Z)$?

The brute force method

we flip n coins, each one heads with probability p,
Z is the number of heads, what is $\mathbb{E}(Z)$?

$$
\begin{aligned}
\mathbb{E}[Z] & =\sum_{k=0}^{n} k \cdot P(Z=k)=\sum_{k=0}^{n} k \cdot\binom{n}{k} p^{k}(1-p)^{n-k} \\
& =\sum_{k=0}^{n} k \cdot \frac{n!}{k!(n-k)!} p^{k}(1-p)^{n-k}=\sum_{k=1}^{n} \frac{n!}{(k-1)!(n-k)!} p^{k}(1-p)^{n-k}
\end{aligned}
$$

$$
=n p \sum_{k=1}^{n} \frac{(n-1)!}{(k-1)!(n-k)!} p^{k-1}(1-p)^{n-k}
$$

$$
=n p \sum_{k=0}^{n-1} \frac{(n-1)!}{k!(n-1-k)!} p^{k}(1-p)^{(n-1)-k}
$$

$$
=n p \sum_{k=0}^{n-1}\binom{n-1}{k} p^{k}(1-p)^{(n-1)-k}=n p(p+(1-p))^{n-1}=n p \cdot 1=n p
$$

Linearity of Expectation (Idea)

Let's say you and your friend sell fish for a living.

- Every day you catch X fish, with $\mathbf{E}[\mathrm{X}]=3$.
- Every day your friend catches Y fish, with $E[Y]=7$.

How many fish do the two of you bring in $(\mathbf{Z}=\mathbf{X}+\mathbf{Y})$ on an average day?

$$
\mathrm{E}[\mathrm{Z}]=\mathrm{E}[\mathrm{X}+\mathrm{Y}]=\mathrm{E}[\mathrm{X}]+\mathrm{E}[\mathrm{Y}]=3+7=10
$$

Linearity of Expectation (Idea)

Let's say you and your friend sell fish for a living.

- Every day you catch X fish, with $\mathbf{E}[\mathrm{X}]=3$.
- Every day your friend catches Y fish, with $\mathrm{E}[\mathrm{Y}]=7$.

How many fish do the two of you bring in $(\mathbf{Z}=\mathbf{X}+\mathbf{Y})$ on an average day?

$$
\mathrm{E}[\mathrm{Z}]=\mathrm{E}[\mathrm{X}+\mathrm{Y}]=\mathrm{E}[\mathrm{X}]+\mathrm{E}[\mathrm{Y}]=3+7=10
$$

You can sell each fish for $\$ 5$ at a store, but you need to pay $\$ 20$ in rent. How much profit do you expect to make?

$$
\mathrm{E}[5 \mathrm{Z}-20]=5 \mathrm{E}[\mathrm{Z}]-20=5 \times 10-20=30
$$

Linearity of Expectation - Proof

Theorem. For any two random variables X and Y

$$
\mathbb{E}(X+Y)=\mathbb{E}(X)+\mathbb{E}(Y)
$$

$$
\begin{aligned}
\mathbb{E}(X+Y) & =\sum_{\omega} P(\omega)(X(\omega)+Y(\omega)) \\
& =\sum_{\omega} P(\omega) X(\omega)+\Sigma_{\omega} P(\omega) Y(\omega) \\
& =\mathbb{E}(X)+\mathbb{E}(Y)
\end{aligned}
$$

Linearity of Expectation

Theorem. For any two random variables X and Y

$$
\mathbb{E}(X+Y)=\mathbb{E}(X)+\mathbb{E}(Y)
$$

Or, more generally: For any random variables X_{1}, \ldots, X_{n},

$$
\mathbb{E}\left(X_{1}+\cdots+X_{n}\right)=\mathbb{E}\left(X_{1}\right)+\cdots+\mathbb{E}\left(X_{n}\right) .
$$

Because: $\mathbb{E}\left(X_{1}+\cdots+X_{n}\right)=\mathbb{E}\left(\left(X_{1}+\cdots+X_{n-1}\right)+X_{n}\right)$

$$
=\mathbb{E}\left(X_{1}+\cdots+X_{n-1}\right)+\mathbb{E}\left(X_{n}\right)=\cdots
$$

Coin flipping again

Suppose we flip a coin independently n times with probability p of coming up Heads each time. Let the r.v. Z be the number of Heads in the n coin flips. What is the $\mathbb{E}(Z)$?

Example - Coin Tosses

we flip n coins, each one heads with probability p
Z is the number of heads, what is $\mathbb{E}(Z)$?

- $X_{i}=\left\{\begin{array}{l}1, i-\text { th coin-flip is heads } \\ 0, i-\text { th coin-flip is tails. }\end{array}\right.$

$$
\text { Fact. } Z=X_{1}+\cdots+X_{n}
$$

Linearity of Expectation:

$$
\mathbb{E}(Z)=\mathbb{E}\left(X_{1}+\cdots+X_{n}\right)=\mathbb{E}\left(X_{1}\right)+\cdots+\mathbb{E}\left(X_{n}\right)=n \cdot p
$$

$$
\begin{aligned}
& \mathbb{P}\left(X_{i}=1\right)=p \\
& \mathbb{P}\left(X_{i}=0\right)=1-p
\end{aligned}
$$

$$
\mathbb{E}\left(X_{i}\right)=p \cdot 1+(1-p) \cdot 0=p
$$

Computing complicated expectations

Often boils down to the following three steps

- Decompose: Finding the right way to decompose the random variable into sum of simple random variables

$$
X=X_{1}+\cdots+X_{n}
$$

- LOE: Observe linearity of expectation.

$$
\mathbb{E}(X)=\mathbb{E}\left(X_{1}\right)+\cdots+\mathbb{E}\left(X_{n}\right)
$$

- Conquer: Compute the expectation of each X_{i}

Often, X_{i} are indicator (o/1) random variables.

Indicator random variable

For any event A, can define the indicator random variable X for A
$X=\left\{\begin{array}{lr}1 & \text { if event A occurs } \\ 0 & \text { if event A does not occur }\end{array}\right.$

$$
\begin{gathered}
\mathbb{P}(X=1)=\mathbb{P}(A) \\
\mathbb{P}(X=0)=1-\mathbb{P}(A)
\end{gathered}
$$

Example: Returning Homeworks

- Class with n students, randomly hand back homeworks. All permutations equally likely.
- Let X be the number of students who get their own HW
- what is $\mathbb{E}(X)$?

$\operatorname{Pr}(\omega)$	ω	$X(\omega)$
$1 / 6$	$1,2,3$	3
$1 / 6$	$1,3,2$	1
$1 / 6$	$2,1,3$	1
$1 / 6$	$2,3,1$	0
$1 / 6$	$3,1,2$	0
$1 / 6$	$3,2,1$	1

Example: Returning Homeworks

- Class with n students, randomly hand back homeworks. All permutations equally likely.
- Let X be the number of students who get their own HW
- what is $\mathbb{E}(X)$?
- Use Linearity of Expectation

Decompose: What is X_{i} ?

$\operatorname{Pr}(\omega)$	ω	$X(\omega)$
$1 / 6$	$1,2,3$	3
$1 / 6$	$1,3,2$	1
$1 / 6$	$2,1,3$	1
$1 / 6$	$2,3,1$	0
$1 / 6$	$3,1,2$	0
$1 / 6$	$3,2,1$	1

Example: Returning Homeworks

- Class with n students, randomly hand back homeworks. All permutations equally likely.
- Let X be the number of students who get their own HW
- what is $\mathbb{E}(X)$?

$\operatorname{Pr}(\omega)$	ω	$X(\omega)$
$1 / 6$	$1,2,3$	3
$1 / 6$	$1,3,2$	1
$1 / 6$	$2,1,3$	1
$1 / 6$	$2,3,1$	0
$1 / 6$	$3,1,2$	0
$1 / 6$	$3,2,1$	1

Decompose: X_{i} indicates if student i got their own HW back
LOE:

Conquer: What is $\mathbb{E}\left(X_{i}\right)$?

$$
\text { A. } \frac{1}{n} \text { B. } \frac{1}{n-1} \text { C. } 1 / 2
$$

Pairs with same birthday

- In a class of m students, on average how many pairs of people have the same birthday?

Decompose:
LOE:

Conquer:

Linearity of Expectation - Even stronger

Theorem. For any random variables X_{1}, \ldots, X_{n}, and real numbers $a_{1}, \ldots, a_{n} \in \mathbb{R}$,

$$
\mathbb{E}\left(a_{1} X_{1}+\cdots+a_{n} X_{n}\right)=a_{1} \mathbb{E}\left(X_{1}\right)+\cdots+a_{n} \mathbb{E}\left(X_{n}\right) .
$$

Very important: In general, we do not have $\mathbb{E}(X \cdot Y)=\mathbb{E}(X) \cdot \mathbb{E}(Y)$

Linearity is special!
In general $\mathbb{E}(g(X)) \neq g(\mathbb{E}(X))$
E.g., $X=\left\{\begin{array}{c}1 \text { with prob } 1 / 2 \\ -1 \text { with prob } 1 / 2\end{array}\right.$

- $\mathbb{E}(X Y) \neq \mathbb{E}(X) \mathbb{E}(Y)$
$\mathbb{E}(X / Y) \neq \mathbb{E}(X) / \mathbb{E}(Y)$
- $\mathbb{E}\left(X^{2}\right) \neq \mathbb{E}(X)^{2}$

How DO we compute $\mathbb{E}(g(X))$?

Expectation of $g(X)$

Definition. Given a discrete $\mathrm{RV} X: \Omega \rightarrow \mathbb{R}$, the expectation or expected value of X is

$$
\mathrm{E}[X]=\sum_{\omega \in \Omega} g(X(\omega)) \cdot \operatorname{Pr}(\omega)
$$

or equivalently

$$
\mathrm{E}[X]=\sum_{x \in X(\Omega)} g(x) \cdot \operatorname{Pr}(X=x)
$$

Example: Returning Homeworks

- Class with n students, randomly hand back homeworks. All permutations equally likely.
- Let X be the number of students who get their own HW
- Let $Y=\left(X^{2}+4\right) \bmod 8$.
- what is $\mathbb{E}(Y)$?

$\operatorname{Pr}(\omega)$	ω	$X(\omega)$
$1 / 6$	$1,2,3$	3
$1 / 6$	$1,3,2$	1
$1 / 6$	$2,1,3$	1
$1 / 6$	$2,3,1$	0
$1 / 6$	$3,1,2$	0
$1 / 6$	$3,2,1$	1

Kandinsky

