CSE 312
 Foundations of Computing II

Lecture 9: Linearity of Expectation

WPAUL G. ALLEN SCHOOL OF COMPUTER SCIENCE \& ENGINEERING

Anna R. Karlin

Slide Credit: Based on Stefano Tessaro's slides for 312 19au incorporating ideas from Alex Tsun, Rachel Lin, Hunter Schafer \& myself ©

Last Class:

- Random Variables
- Probability Mass Function (PMF)
- Cumulative Distribution Fn (CDF)
- Expectation

Today:

- Recap
- Linearity of Expectation
- Indicator Random Variables

Reminder: Random Variables

Definition. A random variable (RV) defined on a probability space (Ω, \mathbb{P}) is a function $X: \Omega \rightarrow \mathbb{R}$.

The set of values that X can take on is called its range/support Ω_{X}
$\left\{X=x_{i}\right\} \xlongequal{\text { def }}\left\{\omega \in \Omega \mid X(\omega)=x_{i}\right\}$

Random variables partition the sample space.

Coin flipping again

Suppose we flip a coin independently n times with probability p of coming up Heads each time. Let the riv. Z be the number of Heads in the n coin flips.

$$
\begin{aligned}
& \Omega=\frac{\text { seas o HTs g length } n\} \quad|\Omega|=2^{n} \mid}{l} \\
& \Omega_{2}:\{0,1,2, \ldots, n\}
\end{aligned}
$$

Probability Mass Function (pmf) and Cumulative Distribution Function (CDF)

Definitions.

For a RV $X: \Omega \rightarrow \mathbb{R}$, the probability mass function (pmf) of X specifies for any real number \underline{x}, the probability that $X=x$.

$$
\mathrm{p}_{X}(x)=\operatorname{Pr}(X=x)=\mathbb{P}(\{\omega \in \Omega \mid X(\omega)=x\})
$$

For a RV $X: \Omega \rightarrow \mathbb{R}$, the cumulative distribution function of X specifies for any real number x, the probability that $X \leq x$.

$$
\begin{aligned}
\mathrm{F}_{X}(x) & =\operatorname{Pr}(X \leq x) \\
F_{X}(-\infty) & =0 \\
F_{X}(+\infty) & =1
\end{aligned}
$$

Coin flipping again

Suppose we flip a coin independently n times with probability p of coming up Heads each time. Let the r.v. Z be the number of Heads in the n coin flips. What is the p.m.f. of Z ?

$$
\begin{aligned}
& \Omega_{2}=\{0,1, \ldots, n\} \\
& \begin{array}{c}
\operatorname{Pr}(2=k)= \\
k \in \Omega_{2} \quad\binom{n}{k} p^{k}(1-p)^{n-k}
\end{array} \\
& \binom{n}{n} 1^{n} 0^{\circ} \\
& p=1 \quad \operatorname{Pr}(2=n)=1 \\
& p p 1-p 1 p p p \\
& p(2=k)=0 \rightarrow p(H+T T T)=p^{2}(1-p)^{3} \\
& \sum_{\omega|X|(\omega)=k} \quad \rightarrow p \sqrt{\frac{(1+T H T T)}{p \cdot(1-p) p(1-p)(1-p)}}=p^{2}(1-p)^{n-k}(1-p)^{3}
\end{aligned}
$$

Expectation of Random Variable

Definition. Given a discrete $\operatorname{RV} X: \Omega \rightarrow \mathbb{R}$, the expectation or expected value of X is
or equivalently

$$
\mathrm{E}[X]=\sum_{x \in \Omega_{\mathrm{X}}} x \cdot \operatorname{Pr}(X=x)
$$

Intuition: "Weighted average" of the possible outcomes (weighted by probability)
$100 \quad \frac{1}{4}$

Coin flipping again

Suppose we flip a coin independently n times with probability p of coming up Heads each time. Let the riv. Z be the number of Heads in the n coin flips. What is the $\mathbb{E}(Z)$?

$$
\begin{aligned}
E(Z) & =\sum_{k=0}^{n} k P(X=k) \\
& =\sum_{k=0}^{n} k\binom{n}{k} p^{k}(1-p)^{n-k}=n p
\end{aligned}
$$

The brute force method

we flip n coins, each one heads with probability p,
Z is the number of heads, what is $\mathbb{E}(Z)$?

$$
\begin{aligned}
\mathbb{E}[Z] & =\sum_{k=0}^{n} k \cdot P(Z=k)=\sum_{k=0}^{n} k \cdot\binom{n}{k} p^{k}(1-p)^{n-k} \\
& =\sum_{k=0}^{n} k \cdot \frac{n!}{k!(n-k)!} p^{k}(1-p)^{n-k}=\sum_{k=1}^{n} \frac{n!}{(k-1)!(n-k)!} p^{k}(1-p)^{n-k}
\end{aligned}
$$

$$
=n p \sum_{k=1}^{n} \frac{(n-1)!}{(k-1)!(n-k)!} p^{k-1}(1-p)^{n-k}
$$

$$
=n p \sum_{k=0}^{n-1} \frac{(n-1)!}{k!(n-1-k)!} p^{k}(1-p)^{(n-1)-k}
$$

$$
=n p \sum_{k=0}^{n-1}\binom{n-1}{k} p^{k}(1-p)^{(n-1)-k}=n p(p+(1-p))^{n-1}=n p \cdot 1=n p
$$

Linearity of Expectation (Idea)

Let's say you and your friend sell fish for a living.

- Every day you catch X fish, with $\mathrm{E}[\mathrm{X}]=3$.
- Every day your friend catches Y fish, with $E[Y]=7$.

How many fish do the two of you bring in $(\mathbf{Z}=\mathbf{X}+\mathbf{Y})$ on an average day?

$$
\mathrm{E}[\mathrm{Z}]=\mathrm{E}[\mathrm{X}+\mathrm{Y}]=\mathrm{E}[\mathrm{X}]+\mathrm{E}[\mathrm{Y}]=3+7=10
$$

Linearity of Expectation (Idea)

Let's say you and your friend sell fish for a living.

- Every day you catch \mathbf{X} fish, with $E[X]=3$.
- Every day your friend catches Y fish, with $E[Y]=7$.

How many fish do the two of you bring in $(\mathbf{Z}=\mathbf{X}+\mathbf{Y})$ on an average day?

$$
\mathrm{E}[\mathrm{Z}]=\mathrm{E}[\mathrm{X}+\mathrm{Y}]=\mathrm{E}[\mathrm{X}]+\mathrm{E}[\mathrm{Y}]=3+7=10
$$

You can sell each fish for \$5 at a store, but you need to pay $\$ 20$ in rent. How much profit do youNexpect to make?
$\mathrm{E}[5 \mathrm{Z}-20]=5 \mathrm{E}[\mathrm{Z}]-20=5 \times 10-20=30$

Linearity of Expectation - Proof

Theorem. For any two random variables X and Y

$$
\mathbb{E}(X+Y)=\mathbb{E}(X)+\mathbb{E}(Y)
$$

$$
\begin{aligned}
\mathbb{E}(X+Y) & =\sum_{\omega} P(\omega)(X(\omega)+Y(\omega)) \\
& =\sum_{\omega} P(\omega) X(\omega)+\sum_{\omega} P(\omega) Y(\omega) \\
& =\mathbb{E}(X)+\mathbb{E}(Y)
\end{aligned}
$$

$$
\begin{aligned}
& z=x+y \\
& \omega \in \Omega \int_{z(\omega)=X(\omega)+Y(\omega)}
\end{aligned}
$$

Linearity of Expectation

Theorem. For any two random variables X and Y

$$
\mathbb{E}(X+Y)=\mathbb{E}(X)+\mathbb{E}(Y)
$$

Or, more generally: For any random variables $\underbrace{X_{1}, \ldots, X_{n}}$,

$$
\mathbb{E}\left(X_{1}+\cdots+X_{n}\right)=\mathbb{E}\left(\underline{X}_{1}\right)+\cdots+\mathbb{E}\left(X_{n}\right) .
$$

Because: $\mathbb{E}\left(X_{1}+\cdots+X_{n}\right)=\mathbb{E}\left(\left(X_{1}+\cdots+X_{n-1}\right)+X_{n}\right)$

$$
=\mathbb{E}\left(X_{1}+\cdots+X_{n-1}\right)+\mathbb{E}\left(X_{n}\right)=\cdots
$$

Coin flipping again

$$
E(X)=\sum_{x \in \Omega_{x}} \underline{x} \cdot p(X=x)
$$

Suppose we flip a coin independently n times with probability p of coming up Heads each time. Let the r.v. Z be the number of Heads in the n coin flips. What is the $\mathbb{E}(Z)$?

Let ${\underset{\pi}{i}}_{X_{i}=\left\{\begin{array}{ll}T \\ 0\end{array} \quad \text { in contos consupHts }\right.}^{0 . w}$.

$$
\begin{aligned}
& Z=x_{1}+x_{2}+x_{3}+\cdots+x_{n} \\
& \mathbb{L}_{\operatorname{OOE}} E(2)=E\left(x_{1}+\cdots+x_{n}\right)=E\left(x_{1}\right)+E\left(x_{2}\right)+\cdots+E\left(x_{n}\right) \\
& E\left(X_{i}\right)=\underset{T}{1 \cdot \operatorname{Pr}(\text { in taos } H)}+0 \cdot \operatorname{Pr} \underline{(\text { in toss } T)} \\
& =\operatorname{Pr}(\text { intossis H) }=p \\
& E(2)=E\left(x_{1}\right)+n+E\left(x_{n}\right)=n p
\end{aligned}
$$

Example - Coin Tosses

we flip n coins, each one heads with probability p
Z is the number of heads, what is $\mathbb{E}(Z)$?

- $X_{i}= \begin{cases}1, & i-\text { th coin-flip is heads } \\ 0, & i-\text { th coin-flip is tails. }\end{cases}$

$$
\text { Fact. } Z=X_{1}+\cdots+X_{n}
$$

Linearity of Expectation:

$$
\mathbb{E}(Z)=\mathbb{E}\left(X_{1}+\cdots+X_{n}\right)=\mathbb{E}\left(X_{1}\right)+\cdots+\mathbb{E}\left(X_{n}\right)=n \cdot p
$$

$$
\begin{aligned}
& \mathbb{P}\left(X_{i}=1\right)=p \\
& \mathbb{P}\left(X_{i}=0\right)=1-p
\end{aligned}
$$

$$
\mathbb{E}\left(X_{i}\right)=p \cdot 1+(1-p) \cdot 0=p
$$

Computing complicated expectations

Often boils down to the following three steps

- Decompose: Finding the right way to decompose the random variable into sum of simple random variables

$$
X=X_{1}+\cdots+X_{n}
$$

- LOE: Observe linearity of expectation.

$$
\mathbb{E}(X)=\mathbb{E}\left(X_{1}\right)+\cdots+\mathbb{E}\left(X_{n}\right) .
$$

- Conquer: Compute the expectation of each X_{i}

Often, X_{i} are indicator (o/1) random variables.

Indicator random variable

For any event A, can define the indicator random variable X for \underline{A}
$X=\left\{\begin{array}{lrl}1 & \text { if event A occurs } \\ 0 & \text { if event A does not occur }\end{array} \quad \begin{array}{l}\mathbb{P}(X=1)=\mathbb{P}(\mathrm{A})=0.55 \\ \end{array}\right.$

Kandinsky
This Photo by Unknown Author is licensed under CC BY-SA-NC
st $1,2, \ldots n$
いロロ

$$
E(x)=\sum_{\substack{k \\ k=0}}^{n} k p(x-k)
$$

Example：Returning Homeworks
－Class with n students，randomly hand back homeworks．All permutations equally likely．
－Let X be the number of students who get their own HW
－what is $\mathbb{E}(X)$ ？$\quad X_{i}= \begin{cases}1 & y \text { strdert } \\ 0 & 0 . w .\end{cases}$

Example: Returning Homeworks

- Class with n students, randomly hand back homeworks. All permutations equally likely.
- Let X be the number of students who get their own HW
- what is $\mathbb{E}(X)$?
- Use Linearity of Expectation

Decompose: What is X_{i} ?

$\operatorname{Pr}(\omega)$	ω	$X(\omega)$
$1 / 6$	$1,2,3$	3
$1 / 6$	$1,3,2$	1
$1 / 6$	$2,1,3$	1
$1 / 6$	$2,3,1$	0
$1 / 6$	$3,1,2$	0
$1 / 6$	$3,2,1$	1

Example: Returning Homeworks

- Class with n students, randomly hand back homeworks. All permutations equally likely.
- Let X be the number of students who get their own HW
- what is $\mathbb{E}(X)$?

$\operatorname{Pr}(\omega)$	ω	$X(\omega)$
$1 / 6$	$1,2,3$	3
$1 / 6$	$1,3,2$	1
$1 / 6$	$2,1,3$	1
$1 / 6$	$2,3,1$	0
$1 / 6$	$3,1,2$	0
$1 / 6$	$3,2,1$	1

Decompose: X_{i} indicates if student i got their own HW back
LOE:

Conquer: What is $\mathbb{E}\left(X_{i}\right)$?

$$
\text { A. } \frac{1}{n} \text { B. } \frac{1}{n-1} \text { C. } 1 / 2
$$

https://pollev.com/ annakarlin185

Pairs with same birthday $\quad X:$ \# pairs f students that have same bday

- In a class of m students, on average how many pairs of people have the same birthday?

Decompose:

LOB:

$$
\begin{aligned}
& X=\sum_{\substack{\left.(i n) \\
u_{i n}\right) \\
p=0}} x_{i j} E\left(x_{i j}\right)=\binom{m}{j} \frac{1}{365} \\
& E(X)=\sum_{i n j n}
\end{aligned}
$$

Conquer:

$$
\begin{aligned}
& X_{i j}= \begin{cases}1 & \text { sthduti \& shantat } j \text { have same buoy } \\
0 & \text { ow. }\end{cases} \\
& E\left(X_{i j}\right)=\frac{1}{365} \\
& 3 \quad x_{a+}+x_{3}+x_{23} \quad=\sum_{\text {abbey }}^{265} \frac{1}{365} \cdot \frac{1}{365}=\frac{1}{365}
\end{aligned}
$$

Linearity of Expectation - Even stronger

Theorem. For any random variables X_{1}, \ldots, X_{n}, and real numbers $a_{1}, \ldots, a_{n} \in \mathbb{R}$,

$$
\mathbb{E}\left(a_{1} X_{1}+\cdots+a_{n} X_{n}\right)=a_{1} \mathbb{E}\left(X_{1}\right)+\cdots+a_{n} \mathbb{E}\left(X_{n}\right) .
$$

$$
E\left(5 x_{1}+7 x_{2}+10\right)=5 E\left(x_{1}\right)+7 E\left(x_{2}\right)+10
$$

Very important: In general, we do not have $\mathbb{E}(X \cdot Y)=\mathbb{E}(X) \cdot \mathbb{E}(Y)$

