CSE 312
 Foundations of Computing II

Lecture 8: Random Variables and Expectation

wPAUL G. ALLEN SCHOOL OF COMPUTER SCIENCE \& ENGINEERING

Guest Lecturer: Aleks Jovcic

Slide Credit: Based on Stefano Tessaro’s slides for 312 19au incorporating ideas from Alex Tsun, Rachel Lin, Hunter Schafer \& Anna ©

Agenda

- Random Variables
- Probability Mass Function (PMF)
- Cumulative Distribution Function (CDF)
- Expectation

Random Variables (Idea)

Often: We want to capture quantitative properties of the outcome of a random experiment, e.g.:

- What is the total of two dice rolls?
- What is the number of coin tosses needed to see the first head?
- What is the number of heads among 2 coin tosses?

Random Variables

Definition. A random variable (RV) for a probability space (Ω, \mathbb{P}) is a function $X: \Omega \rightarrow \mathbb{R}$.

The set of values that X can take on is called its range/support Ω_{X}
Example. Number of heads in 2 independent coin flips $\Omega=\{\mathrm{HH}, \mathrm{HT}, \mathrm{TH}, \mathrm{TT}\}$

RV Example

20 balls labeled $1,2, \ldots, 20$ in a bin

- Draw a subset of 3 uniformly at random
- Let $X=$ maximum of the 3 numbers on the balls
- Example: $X(2,7,5)=7$
- Example: $X(15,3,8)=15$

Poll: https://pollev.com/ annakarlin185

- What is $\left|\Omega_{\mathrm{X}}\right|$?
A. 20^{3}
B. 20
C. 18
D. $\binom{20}{3}$

Agenda

- Random Variables
- Probability Mass Function (PMF)
- Cumulative Distribution Function (CDF)
- Expectation

Probability Mass Function (PMF)

Random variables partition the sample space.
 $\sum_{x \in X(\Omega)} \mathbb{P}(X=x)=1$

Probability Mass Function (PMF)

Definition. For a $\mathrm{RV} X: \Omega \rightarrow \mathbb{R}$, we define the event

$$
\{X=x\} \xlongequal{\text { def }}\{\omega \in \Omega \mid X(\omega)=x\}
$$

We write $\mathbb{P}(X=x)=\mathbb{P}(\{X=x\})=\mathbb{P}(\{\omega \hat{\in} \Omega \mid X(\omega)=x\})$ where $\mathbb{P}(X=x)$ is the probability mass function (PMF) of X

Random variables partition the sample space.
 $\sum_{x \in X(\Omega)} \mathbb{P}(X=x)=1$

Probability Mass Function (PMF)

Definition. For a RV $X: \Omega \rightarrow \mathbb{R}$, we define the event

$$
\{X=x\} \xlongequal{\text { def }}\{\omega \in \Omega \mid X(\omega)=x\}
$$

We write $\mathbb{P}(X=x)=\mathbb{P}(\{X=x\})=\mathbb{P}(\{\omega \in \Omega \mid X(\omega)=x\})$ where $\mathbb{P}(X=x)$ is the probability mass function (PMF) of X

Random variables partition the sample space.
$\mathbb{P}(X=x)=1$

You also see this notation (e.g. in book):

$$
\mathbb{P}(X=x)=p_{X}(\boldsymbol{x})
$$

Probability Mass Function

Flipping two independent coins

$$
\Omega=\{\mathrm{HH}, \mathrm{HT}, \mathrm{TH}, \mathrm{TT}\}
$$

$X=$ number of heads in the two flips

$$
X(H H)=2 \quad X(H T)=1 \quad X(T H)=1 \quad X(T T)=0
$$

$$
\Omega_{\mathrm{X}}=\{0,1,2\}
$$

What is $\operatorname{Pr}(X=k)$?

RV Example

20 balls labeled $1,2, \ldots, 20$ in a bin

- Draw a subset of 3 uniformly at random
- Let $X=$ maximum of the 3 numbers on the balls

What is $\operatorname{Pr}(X=20)$?

Poll:
https://pollev.com/ annakarlin185
A. $\binom{20}{2} /\binom{20}{3}$
B. $\binom{19}{2} /\binom{20}{3}$
C. ${ }^{19^{2}} /\left({ }_{3}^{20}\right)$
D. $19.18 /\binom{20}{3}$

Agenda

- Random Variables
- Probability Mass Function (PMF)
- Cumulative Distribution Function (CDF)
- Expectation

Cumulative Distribution Function (CDF)

Definition. For a RV $X: \Omega \rightarrow \mathbb{R}$, the cumulative distribution function of where X specifies for any real number x, the probability that $X \leq x$.

$$
\mathrm{F}_{X}(x)=\operatorname{Pr}(X \leq x)
$$

Go back to 2 coin clips, where X is the number of heads

$$
\operatorname{Pr}(X=x)= \begin{cases}\frac{1}{4}, & x=0 \\ \frac{1}{2}, & x=1 \\ \frac{1}{4}, & x=2\end{cases}
$$

Cumulative Distribution Function (CDF)

Definition. For a RV $X: \Omega \rightarrow \mathbb{R}$, the cumulative distribution function of where X specifies for any real number x, the probability that $X \leq x$.

$$
\mathrm{F}_{X}(x)=\operatorname{Pr}(X \leq x)
$$

Go back to 2 coin clips, where X is the number of heads
$\operatorname{Pr}(X=x)=\left\{\begin{array}{ll}\frac{1}{4}, & x=0 \\ \frac{1}{2}, & x=1 \\ \frac{1}{4}, & x=2\end{array} \quad F_{X}(x)=\left\{\begin{array}{lr}0, & x<0 \\ \frac{1}{4}, & 0 \leq x<1 \\ \frac{3}{4}, & 1 \leq x<2 \\ 1, & 2 \leq x\end{array}\right.\right.$

Example: Returning Homeworks

- Class with 3 students, randomly hand back homeworks. All permutations equally likely.
- Let X be the number of students who get their own HW

$\operatorname{Pr}(\omega)$	ω	$X(\omega)$
$1 / 6$	$1,2,3$	3
$1 / 6$	$1,3,2$	1
$1 / 6$	$2,1,3$	1
$1 / 6$	$2,3,1$	0
$1 / 6$	$3,1,2$	0
$1 / 6$	$3,2,1$	1

Agenda

- Random Variables
- Probability Mass Function (PMF)
- Cumulative Distribution Function (CDF)
- Expectation

Expectation (Idea)

What is the expected number of heads in 2 independent flips of a fair coin?

Cumulative Disribution Function (CDF)

Definition. Given a discrete $\operatorname{RV} X: \Omega \rightarrow \mathbb{R}$, the expectation or expected value of X is

$$
\mathrm{E}[X]=\sum_{\omega \in \Omega} X(\omega) \cdot \operatorname{Pr}(\omega)
$$

or equivalently

$$
\mathrm{E}[X]=\sum_{x \in X(\Omega)} x \cdot \operatorname{Pr}(X=x)
$$

Intuition: "Weighted average" of the possible outcomes (weighted by probability)

Example: Returning Homeworks

- Class with 3 students, randomly hand back homeworks. All permutations equally likely.
- Let X be the number of students who get their own HW

$\operatorname{Pr}(\omega)$	ω	$X(\omega)$
$1 / 6$	$1,2,3$	3
$1 / 6$	$1,3,2$	1
$1 / 6$	$2,1,3$	1
$1 / 6$	$2,3,1$	0
$1 / 6$	$3,1,2$	0
$1 / 6$	$3,2,1$	1

Flip a Biased Coin Until Heads (Independent Flips)

Suppose a coin has probability p of being heads. Keep flipping independent flips until heads. Let X be the number of flips until heads.

What is: $\operatorname{Pr}(X=1)=$

What is: $\operatorname{Pr}(X=2)=$

What is: $\operatorname{Pr}(X=k)=$

Flip a Biased Coin Until Heads (Independent Flips)

Suppose a coin has probability p of being heads. Keep flipping independent flips until heads. Let X be the number of flips until heads. What is $\mathrm{E}[X]$?

Students on a bus

A group of 120 students are driven on 3 buses to a football game. There are 36 students in the first bus, 40 in the second and 44 in the third. Let Y be the number of students on a uniformly random bus. What is the pmf of Y and $\mathrm{E}(\mathrm{Y})$? When the buses arrive, one of the 120 students is randomly chosen. Let X denote the number of students on the bus of the randomly chosen student. What is the pmf of X and what is $E(X)$?

Coin flipping again

Suppose we flip a coin with probability p of coming up Heads n times. Let X be the number of Heads in the n coin flips. What is the pmf of X ?

