CSE 312
 Foundations of Computing II

Lecture 8: Random Variables and Expectation

WPAUL G. ALLEN SCHOOL OF COMPUTER SCIENCE \& ENGINEERING

Guest Lecturer: Aleks Jovcic

Slide Credit: Based on Stefano Tessaro's slides for 312 19au incorporating ideas from Alex Tsun, Rachel Lin, Hunter Schafer \& Anna ©

Agenda

- Random Variables
- Probability Mass Function (PMF)
- Cumulative Distribution Function (CDF)
- Expectation

Random Variables (Idea)

Often: We want to capture quantitative properties of the outcome of a random experiment, e.g.:

- What is the total of two dice rolls?
- What is the number of coin tosses needed to see the first head?
- What is the number of heads among 2 coin tosses?

$$
\begin{aligned}
& \{4,3\} \rightarrow 7 \\
& \{1,23 \rightarrow 3
\end{aligned}
$$

$\{T H\} \rightarrow 2$
ZTTTH \rightarrow T 5
$H T \rightarrow 1$

Random Variables

Definition. A random variable (RV) for a probability space $(\Omega . \mathbb{P})$ is a function $X \Omega \Omega$.

The set of values that X can take on is called its range/support Ω_{X}
Example. Number of heads in 2 independent coin flips $\Omega=\{\mathrm{HH}, \mathrm{HT}, \mathrm{TH}, \mathrm{TT}\}$

$$
x(\{2,7,5\}) \rightarrow 7
$$

20 balls labeled $1,2, \ldots, 20$ in a bili

$$
\text { cem } x(315,3,83) \rightarrow 15
$$

- Draw a subset of 3 uniformly at random
- Let $X=$ maximum of the 3 numbers on the balls
- Example: $X(2,7,5)=7$
- Example: $X(15,3,8)=15$

Poll: https://pollev.com/aleksjacic835

- What is $\left|\Omega_{\mathrm{X}}\right|$?

$$
\{1,2,3\}
$$

Agenda

- Random Variables
- Probability Mass Function (PMF) \longleftarrow
- Cumulative Distribution Function (CDF)
- Expectation

Probability Mass Function (PMF)

Probability Mass Function (PMF)

ω

Definition. For a RV $X: \Omega \rightarrow \mathbb{R}$, we define the event
$\{X=x\}\{\omega \in \Omega \mid X(\omega)=\mathbb{Q}$
We write $\mathbb{P}(X=x)=\mathbb{P}(\{X=x\})=\mathbb{P}(\{\omega \hat{\in} \Omega \mid X(\omega)=x\})$ where $\mathbb{P}(X=x)$ is the probability mass function (PMF) of X

Random variables partition the sample space.
 $\sum_{x \in X(\Omega)} \mathbb{P}(X=x)=1$

Probability Mass Function (PDIF)

Definition. For a RV $X: \Omega \rightarrow \mathbb{R}$, we define the event

$$
\{X=x\} \stackrel{\text { def }}{=} \omega \in \Omega X X(\omega)=x
$$

We write $\mathbb{P}(X=x)=\mathbb{P}(\{X=x\})=\mathbb{P}(\{\omega \in \Omega \mid X(\omega)=x\})$ where $\mathbb{P}(X=x)$ is the probability mass function (PMF) of X

Random variables partition the sample space.
$\sum_{x \in X(\Omega)} \mathbb{P}(X=x)=1$

You also see this

notation (e.g. in book):

Probability Mass Function

Flipping two independent coins

$$
\begin{aligned}
& X=\text { number of heads in the two flips } \\
& X(H H)=2 \\
& X(H T)=1 \\
& X(T H)>1 \\
& X(T T)=0 \\
& \text { What is } \operatorname{Pr}(X=k) \text { ? } \\
& \lambda^{1} \\
& \Omega_{\mathrm{X}}=\{0,1,2\} \quad \mathbb{P}(X=2) \\
& \begin{array}{c}
\hookrightarrow 1 / 4 \\
(x=-2)
\end{array} \\
& \mathbb{P}(X=k)= \begin{cases}1 / 4 & k=2 \\
1 / 2 & k=1 \\
1 / 4 & k=0 \\
0 & \text { athourbe }\end{cases} \\
& \pi(x=0.15)
\end{aligned}
$$

RV Example
dI)

20 balls labeled $1,2, \ldots, 20$ in a hin

- Draw a subset of 3 uniformly at random
- Let $X=$ maximum of the 3 numbers on the balls

$$
p(x=19)
$$

Poll: alekjacic835
https://pollev.com/
What is $\operatorname{Pr}(X=20)$?

$$
\begin{aligned}
\mathbb{R}(X=20) & =\mathbb{P}(\xi \ldots 3) \\
& =\frac{|\xi \ldots 3|}{|\Omega|}=\frac{\binom{19}{2}}{\binom{20}{3}}
\end{aligned}
$$

C. $\quad 19^{2} /\binom{20}{3}$
D. $19 \cdot 18 /\binom{20}{3}$

Agenda

- Random Variables
- Probability Mass Function (PMF)
- Cumulative Distribution Function (CDF)
- Expectation

Cumulative Distribution Function (CDF)

Definition. For a RV $X: \Omega \rightarrow \mathbb{R}$, the cumulative distribution function of where X specifies for any real number x, the probability that $X \leq x$.

$$
\mathrm{F}_{X}(x)=\operatorname{Pr}(X \leq x)
$$

Go back to 2 coin clips, where X is the number of heads

$$
\text { CDT } \quad x=-0.5
$$

Cumulative Distribution Function (CDF)

Definition. For a RV $X: \Omega \rightarrow \mathbb{R}$, the cumulative distribution function of where X specifies for any real number x, the probability that $X \leq x$.

$$
\mathrm{F}_{X}(x)=\operatorname{Pr}(X \leq x)
$$

Go back to 2 coin clips, where X is the number of heads
$\operatorname{Pr}(X=x)=\left\{\begin{array}{ll}\frac{1}{4}, & x=0 \\ \frac{1}{2}, & x=1 \\ \frac{1}{4}, & x=2\end{array} \quad F_{X}(x)=\left\{\begin{array}{lr}0, & x<0 \\ \frac{1}{4}, & 0 \leq x<1 \\ \frac{3}{4}, & 1 \leq x<2 \\ 1, & 2 \leq x\end{array}\right.\right.$

Example: Returning Homeworks

- Class with 3 students, randomly hand back homeworks. All permutations equally likely.
- Let X be the number of students who get their own HW

Agenda

- Random Variables
- Probability Mass Function (PMF)
- Cumulative Distribution Function (CDF)
- Expectation

Expectation (Idea)

What is the expected number of heads in 2 independent flips of a fair coin?

Expeitaction
 -Cumulative Disribution Function (CDF)

Definition. Given a discrete $\mathrm{RV} X: \Omega \rightarrow \mathbb{R}$, the expectation or expected value of X is
or equivalently $\because[X]$

$$
\mathrm{E}[X]=\sum_{x \in X(\Omega)}(X) \operatorname{Pr}(X=x)
$$

Intuition: "Weighted average" of the possible outcomes (weighted by probability)

Example: Returning Homeworks

$$
\Omega_{x}=\{3,1,0\}
$$

- Class with 3 students, randomly hand back homeworks. All permutations equally likely.
- Let X be the number of students who get their own HW

\[

\]

$$
\begin{aligned}
& \in[x]=\sum_{x=2 x} x \cdot \mathbb{T}(x=x) \\
& =3 \cdot \mathbb{P}(x=3)+1 \cdot 1 / 2+0 \cdot 1 / 3 \\
& =\sum_{w=-x} x(\omega) T /(\omega)=1 / 6 \\
& =3 \cdot 1 / 6+1 \cdot 1 / 6+1 \cdot 1 / 6+0 \cdot 1 / 6+0 \cdot 1 / 6+1 \cdot 1 / 6 \\
& =1
\end{aligned}
$$

Flip a Biased Coin Until Heads (Independent Flips)

Suppose a coin has probability p Oft being heads. Keep flipping independent flips until heads. Let X be the number of flips until heads.

What is: $\operatorname{Pr}(X=1)=P$
What is: $\operatorname{Pr}(X=2)=((-p) p$

$$
R(x=3)=(1-p)^{2} P
$$

What is: $\operatorname{Pr}(X=k)=(1-p)^{k-1} p$

Flip a Biased Coin Until Heads (Independent Flips)

$$
p=\frac{1}{20}
$$

Suppose a coin has probability p of being heads. Keep flipping independent flips until heads. Let X be the number of flips until heads.
What is $\mathrm{E}[X]$?

$$
\begin{aligned}
& E(X)=\frac{1}{P} \\
& E[X]=\sum_{k \in \Omega_{X}} k \cdot \mathbb{P}(X=k)=\sum_{k=1}^{\infty} k \cdot \mathbb{P}(X=k)
\end{aligned}
$$

Students on a bus

A group of 120 students are driven on 3 buses to a football game. There are 36 students in the first bus, 40 in the second and 44 in the third. Let Y be the number of students on a uniformly random bus. What is the pmf of Y and $\mathrm{E}(\mathrm{Y})$? When the buses arrive, one of the 120 students is randomly chosen. Let X denote the number of students on the bus of the randomly chosen student. What is the pmf of X and what is $E(X)$?

Coin flipping again

Suppose we flip a coin with probability p of coming up Heads n times. Let X be the number of Heads in the n coin flips. What is the pmf of X ?

