CSE 312
 Foundations of Computing II

Lecture 6: Chain Rule and Independence

w
PAUL G. ALLEN SCHOOL OF COMPUTER SCIENCE \& ENGINEERING

Anna R. Karlin

Slide Credit: Based on Stefano Tessaro’s slides for 312 19au incorporating ideas from Alex Tsun, Rachel Lin, Hunter Schafer \& myself ©

Last Class:

- Conditional Probability

$$
\mathbb{P}(\mathcal{B} \mid \mathcal{A})=\frac{\mathbb{P}(\mathcal{A} \cap \mathcal{B})}{\mathbb{P}(\mathcal{A})}
$$

- Bayes Theorem $\quad \mathbb{P}(A \mid B)=\frac{\mathbb{P}(B \mid A) \mathbb{P}(A)}{\mathbb{P}(B)}$
- Law of Total probability .
$\mathbb{P}(F)=\sum_{i=1}^{n} \mathbb{P}\left(F \mid E_{i}\right) \mathbb{P}\left(E_{i}\right) \quad E_{i}$ partition Ω

Bayes Theorem with Law of Total Probability

Bayes Theorem with LTP: Let $E_{1}, E_{2}, \ldots, E_{n}$ be a partition of the sample space, and F and event. Then,

$$
P\left(E_{1} \mid F\right)=\frac{P\left(F \mid E_{1}\right) P\left(E_{1}\right)}{P(F)}=\frac{P\left(F \mid E_{1}\right) P\left(E_{1}\right)}{\sum_{i=1}^{n} P\left(F \mid E_{i}\right) P\left(E_{i}\right)}
$$

Simple Partition: In particular, if E is an event with non-zero probability, then

$$
P(E \mid F)=\frac{P(F \mid E) P(E)}{P(F \mid E) P(E)+P\left(F \mid E^{C}\right) P\left(E^{C}\right)}
$$

Example - Zika Testing

A disease caused by Zika virus that's spread through mosquito bites.

Usually no or mild symptoms (rash); sometimes severe symptoms (paralysis).

During pregnancy: may cause birth defects.

Suppose you took a Zika test, and it returns "positive", what is the likelihood that you actually have the disease?

- Tests for diseases are rarely 100% accurate.

Example - Zika Testing

Suppose we know the following Zika stats

- A test is 98% effective at detecting Zika ("true positive")
- However, the test yields a "false positive" 1% of the time
- 0.5% of the US population has Zika.

What is the probability you have Zika (event Z) if you test positive (event T).
https://pollev.com/ annakarlin185
A) Less than 0.25
B) Between 0.25 and 0.5
C) Between 0.5 and 0.75
D) Between 0.75 and 1

Example - Zika Testing

Suppose we know the following Zika stats

- A test is 98% effective at detecting Zika ("true positive")
- However, the test may yield a "false positive" 1% of the time
- 0.5% of the US population has Zika.

What is the probability you have Zika (event Z) if you test positive (event T).

Example - Zika Testing

Have zika blue, don't pink
Suppose we know the following Zika stats

- A test is 98% effective at detecting Zika ("true positive") 100%
- However, the test may yield a "false positive" 1% of the time $10 / 995=$ approximately 1%
- 0.5% of the US population has Zika. 5% have it.

What is the probability you have Zika (event Z) if you test positive (event T).

Suppose we had 1000 people:

- 5 have Zika and test positive
- 985 do not have Zika and test negative
- 10 do not have Zika and test positive

$$
\frac{5}{5+10}=\frac{1}{3} \approx 0.33
$$

Demo

Philosophy - Updating Beliefs

While it's not 98\% that you have the disease, your beliefs changed drastically

Z = you have Zika
T = you test positive for Zika

Prior: $\mathrm{P}(\mathrm{Z})$

Posterior: $\mathrm{P}(\mathrm{Z} \mid \mathrm{T})$

Example - Zika Testing

Suppose we know the following Zika stats

- A test is 98% effective at detecting Zika ("true positive")
- However, the test may yield a "false positive" 1% of the time
- 0.5% of the US population has Zika.

What is the probability you test negative (event \bar{T}) if you have Zika (event Z)?

Conditional Probability Define a Probability Space

The probability conditioned on A follows the same properties as (unconditional) probability.

Example. $\mathbb{P}\left(\mathcal{B}^{c} \mid \mathcal{A}\right)=1-\mathbb{P}(\mathcal{B} \mid \mathcal{A})$

Conditional Probability Define a Probability Space

The probability conditioned on A follows the same properties as (unconditional) probability.

Example. $\mathbb{P}\left(\mathcal{B}^{c} \mid \mathcal{A}\right)=1-\mathbb{P}(\mathcal{B} \mid \mathcal{A})$

Formally. (Ω, \mathbb{P}) is a probability space $+\mathbb{P}(\mathcal{A})>0$
$\longrightarrow(\mathcal{A}, \mathbb{P}(\cdot \mid \mathcal{A}))$ is a probability space

Today:

- Chain Rule
- Independence
- Sequential Process

Chain Rule

$$
\mathbb{P}(\mathcal{B} \mid \mathcal{A})=\frac{\mathbb{P}(\mathcal{A} \cap \mathcal{B})}{\mathbb{P}(\mathcal{A})} \quad \square \mathbb{P}(\mathcal{A}) \mathbb{P}(\mathcal{B} \mid \mathcal{A})=\mathbb{P}(\mathcal{A} \cap \mathcal{B})
$$

Chain Rule

$$
\mathbb{P}(\mathcal{B} \mid \mathcal{A})=\frac{\mathbb{P}(\mathcal{A} \cap \mathcal{B})}{\mathbb{P}(\mathcal{A})} \quad \square \mathbb{P}(\mathcal{A}) \mathbb{P}(\mathcal{B} \mid \mathcal{A})=\mathbb{P}(\mathcal{A} \cap \mathcal{B})
$$

Theorem. (Chain Rule) For events $\mathcal{A}_{1}, \mathcal{A}_{2}, \ldots, \mathcal{A}_{n}$,

$$
\mathbb{P}\left(\mathcal{A}_{1} \cap \cdots \cap \mathcal{A}_{n}\right)=\mathbb{P}\left(\mathcal{A}_{1}\right) \cdot \mathbb{P}\left(\mathcal{A}_{2} \mid \mathcal{A}_{1}\right) \cdot \mathbb{P}\left(\mathcal{A}_{3} \mid \mathcal{A}_{1} \cap \mathcal{A}_{2}\right)
$$

$$
\cdots \mathbb{P}\left(\mathcal{A}_{n} \mid \mathcal{A}_{1} \cap \mathcal{A}_{2} \cap \cdots \cap \mathcal{A}_{n-1}\right)
$$

An easy way to remember: We have n tasks and we can do them sequentially, conditioning on the outcome of previous tasks

Chain Rule Example

Have a Standard 52-Card Deck. Shuffle It, and draw the top 3 cards in order. (uniform probability space).

$$
)=P(A \cap B \cap C) ?
$$

A: Ace of Spades First
B: 10 of Clubs Second
C: 4 of Diamonds Third

Chain Rule Example

Have a Standard 52-Card Deck. Shuffle It, and draw the top 3 cards in order. (uniform probability space).

Independence

Definition. Two events \mathcal{A} and \mathcal{B} are (statistically) independent if

$$
\mathbb{P}(\mathcal{A} \cap \mathcal{B})=\mathbb{P}(\mathcal{A}) \cdot \mathbb{P}(\mathcal{B})
$$

Alternatively,

- If $\mathbb{P}(\mathcal{A}) \neq 0$, equivalent to $\mathbb{P}(\mathcal{B} \mid \mathcal{A})=\mathbb{P}(B)$
- If $\mathbb{P}(\mathcal{B}) \neq 0$, equivalent to $\mathbb{P}(\mathcal{A} \mid \mathcal{B})=\mathbb{P}(\mathcal{A})$
"The probability that \mathcal{B} occurs after observing \mathcal{A} " -- Posterior
= "The probability that \mathcal{B} occurs" -- Prior

Example -- Independence

Toss a coin 3 times. Each of 8 outcomes equally likely.

- $A=\{$ at most one $T\}=\{\mathrm{HHH}, \mathrm{HHT}, \mathrm{HTH}, \mathrm{THH}\}$
- $B=\{$ at most 2 Heads $\}=\{H H H\}^{c}$ Independent?

$$
\mathbb{P}(\mathcal{A} \cap \mathcal{B}) \stackrel{?}{\doteq} \mathbb{P}(\mathcal{A}) \cdot \mathbb{P}(\mathcal{B})
$$

Poll:
A. Yes, independent
B. No

Often probability space (Ω, \mathbb{P}) is defined using independence

Example - Network Communication

Each link works with the probability given, independently. What's the probability A and D can communicate?
$\mathbb{P}(A D)=?$

Example - Network Communication

Each link works with the probability given, independently. What's the probability A and D can communicate?

$$
\begin{aligned}
& \mathbb{P}(A D)=\mathbb{P}(A B \cap B D \text { or } A C \cap C D) \\
& \quad=\mathbb{P}(A B \cap B D)+\mathbb{P}(A C \cap C D)-\mathbb{P}(A B \cap B D \cap A C \cap C D)
\end{aligned}
$$

$$
\mathbb{P}(A B \cap B D)=\mathbb{P}(A B) \cdot \mathbb{P}(B D)=p q
$$

$$
\mathbb{P}(A C \cap C D)=\mathbb{P}(A C) \cdot \mathbb{P}(C D)=r s
$$

$$
\mathbb{P}(A B \cap B D \cap A C \cap C D)=\mathbb{P}(A B) \cdot \mathbb{P}(B D) \cdot \mathbb{P}(A C) \cdot \mathbb{P}(C D)=\text { pqrs }
$$

Example - Biased coin

We have a biased coin comes up Heads with probability 2/3; Each flip is independent of all other fips. Suppose it is tossed 3 times.
$\mathbb{P}(H H H)=$
$\mathbb{P}(T T T)=$
$\mathbb{P}(H T T)=$

Example - Biased coin

We have a biased coin comes up Heads with probability 2/3, independently of other flips. Suppose it is tossed 3 times.
$\mathbb{P}(2$ heads in 3 tosses $)=$
A) $(2 / 3)^{2} 1 / 3$
B) $2 / 3$
C) $3(2 / 3)^{2} 1 / 3$
D) $(1 / 3)^{2}$

Example - Throwing A Die Repeatedly

Alice and Bob are playing the following game.
A 6-sided die is thrown, and each time it's thrown, regardless of the history, it is equally likely to show any of the six numbers

If it shows $1,2 \rightarrow$ Alice wins.
If it shows $3 \rightarrow$ Bob wins.
Otherwise, play another round
What is $\operatorname{Pr}\left(\right.$ Alice wins on $1^{\text {st }}$ round $)=$ $\operatorname{Pr}\left(\right.$ Alice wins on $2^{\text {st }}$ round $)=$ $\operatorname{Pr}\left(\right.$ Alice wins on $i^{\text {th }}$ round $)=$? $\operatorname{Pr}($ Alice wins $)=$?

Sequential Process - defined in terms of independence

A 6-sided die is thrown, and each time it's thrown, regardless of the history, it is equally likely to show any of the six numbers

Local Rules: In each round

- If it shows $1,2 \rightarrow$ Alice wins
- If it shows $3 \rightarrow$ Bob wins
- Else, play another round

Pr (Alice wins on i-th round \mid nobody won in rounds $1 . . i-1$) $=1 / 3$

Sequential Process - Example

\mathcal{A}_{2}

Local Rules: In each round

- If it shows $1,2 \rightarrow$ Alice wins
- If it shows $3 \rightarrow$ Bob wins
- Else, play another round

Events:

- $\mathcal{A}_{i}=$ Alice wins in round i
- $\mathcal{N}_{i}=$ nobody wins in rounds $1 . . i$

$$
\mathcal{A}_{3}
$$

\mathcal{A}_{4}
$\mathcal{N}_{2} \quad 1 / 2$

Sequential Process - Example

Events:

- $\mathcal{A}_{i}=$ Alice wins in round i
- $\mathcal{N}_{i}=$ nobody wins in rounds $1 . . i$
$\mathbb{P}\left(\mathcal{A}_{2}\right)=$

Sequential Process - Example

Events:

- $\mathcal{A}_{i}=$ Alice wins in round i
- $\mathcal{N}_{i}=$ nobody wins in rounds $1 . . i$

$$
\begin{aligned}
\mathbb{P}\left(\mathcal{A}_{2}\right) & =\mathcal{P}\left(\mathcal{N}_{1} \cap \mathcal{A}_{2}\right) \\
& =\mathcal{P}\left(\mathcal{N}_{1}\right) \times \mathcal{P}\left(\mathcal{A}_{2} \mid \mathcal{N}_{1}\right) \\
& =\frac{1}{2} \times \frac{1}{3}=\frac{1}{6}
\end{aligned}
$$

The event \mathcal{A}_{2} implies \mathcal{N}_{1}, and this means that $\mathcal{A}_{2} \cap \mathcal{N}_{1}=\mathcal{A}_{2}$ $2^{\text {nd }}$ roll indep of $1^{\text {st }}$ roll

Sequential Process - Example

$$
\begin{aligned}
& \mathbb{P}\left(\mathcal{A}_{i}\right)=\mathcal{P}\left(\mathcal{N}_{1} \cap \mathcal{N}_{2} \cap \cdots \cap \mathcal{N}_{i-1} \cap \mathcal{A}_{i}\right) \\
& =\mathcal{P}\left(\mathcal{N}_{1}\right) \times \mathcal{P}\left(\mathcal{N}_{2} \mid \mathcal{N}_{1}\right) \times \mathcal{P}\left(\mathcal{N}_{3} \mid \mathcal{N}_{1} \cap \mathcal{N}_{2}\right) \\
& \quad \cdots \times \mathcal{P}\left(\mathcal{N}_{i-1} \mid \mathcal{N}_{1} \cap \mathcal{N}_{2} \cap \cdots \cap \mathcal{N}_{i-1}\right) \times \mathcal{P}\left(\mathcal{A}_{i} \mid \mathcal{N}_{1} \cap \mathcal{N}_{2} \cap \cdots \cap \mathcal{N}_{i-1}\right) \\
& \\
& \quad=\left(\frac{1}{2}\right)^{i-1} \times \frac{1}{3}
\end{aligned}
$$

Sequential Process -- Example

$\mathcal{A}_{i}=$ Alice wins in round $i \quad \mathbb{P}\left(\mathcal{A}_{i}\right)=\left(\frac{1}{2}\right)^{i-1} \times \frac{1}{3}$
What is the probability that Alice wins?

Sequential Process -- Example

$\mathcal{A}_{i}=$ Alice wins in round $i \quad \mathbb{P}\left(\mathcal{A}_{i}\right)=\left(\frac{1}{2}\right)^{i-1} \times \frac{1}{3}$
What is the probability that Alice wins?

$$
\begin{aligned}
& \mathbb{P}\left(\mathcal{A}_{1} \cup \mathcal{A}_{2} \cup \cdots\right)=\sum_{i=1}^{\infty} \mathbb{P}\left(\mathcal{A}_{i}\right) \\
& \sum_{i=1}^{\infty}\left(\frac{1}{2}\right)^{i-1} \times \frac{1}{3}=\frac{1}{3} \times 2=\frac{2}{3}
\end{aligned}
$$

$$
\text { All } \mathcal{A}_{i} \text { 's are disjoint. }
$$

$$
\text { Fact. If }|x|<1 \text {, then } \sum_{i=0}^{\infty} x^{i}=\frac{1}{1-x} .
$$

Independence - Another Look

Definition. Two events \mathcal{A} and \mathcal{B} are (statistically) independent if

$$
\mathbb{P}(\mathcal{A} \cap \mathcal{B})=\mathbb{P}(\mathcal{A}) \cdot \mathbb{P}(\mathcal{B}) .
$$

"Equivalently." $\mathbb{P}(\mathcal{A} \mid \mathcal{B})=\mathbb{P}(\mathcal{A})$.

Events generated independently \rightarrow their probabilities satisfy independence Not necessarily

This can be counterintuitive!

Sequential Process

Setting: An urn contains:

- 3 red and 3 blue balls w/ probability $3 / 5$
- 3 red and 1 blue balls $w /$ probability $1 / 10$
- 5 red and 7 blue balls $w /$ probability 3/10 We draw a ball at random from the urn.

Are R and $3 R 3 B$ independent?

Sequential Process

Are R and 3R3B independent?

Setting: An urn contains:

- 3 red and 3 blue balls w/ probability $3 / 5$
- 3 red and 1 blue balls $w /$ probability $1 / 10$
- 5 red and 7 blue balls $\mathrm{w} /$ probability 3/10 We draw a ball at random from the urn.

$$
\mathbb{P}(\mathbf{R})=\frac{3}{5} \times \frac{1}{2}+\frac{1}{10} \times \frac{3}{4}+\frac{3}{10} \times \frac{5}{12}=\frac{1}{2}
$$

$$
\mathbb{P}(3 R 3 B) \times \mathbb{P}(R \mid 3 R 3 B)
$$

$$
\text { Independent! } \mathbb{P}(R)=\mathbb{P}(R \mid 3 R 3 B)
$$

Conditional Independence

Definition. Two events \mathcal{A} and \mathcal{B} are independent conditioned on C if

$$
\mathbb{P}(C) \neq 0 \text { and } \mathbb{P}(\mathcal{A} \cap \mathcal{B} \mid C)=\mathbb{P}(\mathcal{A} \mid C) \cdot \mathbb{P}(\mathcal{B} \mid C) .
$$

Plain Independence. Two events \mathcal{A} and \mathcal{B} are independent if

$$
\mathbb{P}(\mathcal{A} \cap \mathcal{B})=\mathbb{P}(\mathcal{A}) \cdot \mathbb{P}(\mathcal{B}) .
$$

Equivalence:

- If $\mathbb{P}(\mathcal{A}) \neq 0$, equivalent to $\mathbb{P}(\mathcal{B} \mid \mathcal{A})=\mathbb{P}(B)$
- If $\mathbb{P}(\mathcal{B}) \neq 0$, equivalent to $\mathbb{P}(\mathcal{A} \mid \mathcal{B})=\mathbb{P}(\mathcal{A})$

Conditional Independence

Definition. Two events \mathcal{A} and \mathcal{B} are independent conditioned on C if $\mathbb{P}(C) \neq 0$ and $\mathbb{P}(\mathcal{A} \cap \mathcal{B} \mid C)=\mathbb{P}(\mathcal{A} \mid C) \cdot \mathbb{P}(\mathcal{B} \mid C)$.

Equivalence:

- If $\mathbb{P}(\mathcal{A} \cap C) \neq 0$, equivalent to $\mathbb{P}(\mathcal{B} \mid \mathcal{A} \cap C):=\mathbb{P}(B \mid C)$
- If $\mathbb{P}(\mathcal{B} \cap C) \neq 0$, equivalent to $\mathbb{P}(\mathcal{A} \mid \mathcal{B} \cap C)=\mathbb{P}(\mathcal{A} \mid C)$

Example - More coin tossing

Suppose there is a coin C 1 with $\operatorname{Pr}(\mathrm{Head})=0.3$ and a coin C2 with $\operatorname{Pr}($ Head $)=0.9$. We pick one randomly with equal probability and flip that coin twice independently. What is the probability we get all heads?

$$
\operatorname{Pr}(H H)=\operatorname{Pr}(H H \mid C 1) \operatorname{Pr}(C 1)+\operatorname{Pr}(H H \mid C 2) \operatorname{Pr}(C 2)
$$

Example - More coin tossing

Suppose there is a coin C1 with $\operatorname{Pr}(\mathrm{Head})=0.3$ and a coin C2 with $\operatorname{Pr}($ Head $)=0.9$. We pick one randomly with equal probability and flip that coin 2 times independently. What is the probability we get all heads?

$$
\begin{aligned}
& \operatorname{Pr}(H H)=\operatorname{Pr}(H H \mid C 1) \operatorname{Pr}(C 1)+\operatorname{Pr}(H H \mid C 2) \operatorname{Pr}(C 2) \\
& =\operatorname{Pr}(H \mid C 2)^{2} \operatorname{Pr}(C 1)+\operatorname{Pr}(H \mid C 2)^{2} \operatorname{Pr}(C 2) \quad \text { Conditional Independence } \\
& =0.3^{2} \cdot 0.5+0.9^{2} \cdot 0.5=0.45 \\
& \\
& \operatorname{Pr}(H)=\operatorname{Pr}(H \mid C 1) \operatorname{Pr}(C 1)+\operatorname{Pr}(H \mid C 2) \operatorname{Pr}(C 2)=0.6
\end{aligned}
$$

