CSE 312
 Foundations of Computing II

Lecture 6: Chain Rule and Independence

WPAUL G. ALLEN SCHOOL OF COMPUTER SCIENCE \& ENGINEERING

Anna R. Karlin

Slide Credit: Based on Stefano Tessaro's slides for 312 19au incorporating ideas from Alex Tsun, Rachel Lin, Hunter Schafer \& myself ©

Last Class:

- Conditional Probability
- Bayes Theorem
- Law of Total probability

$$
\mathbb{P}(\mathcal{B} \mid \mathcal{A})=\frac{\mathbb{P}(\mathcal{A} \cap \mathcal{B})}{\mathbb{P}(\mathcal{A})}
$$

$$
\mathbb{P}(A \mid B)=\frac{\mathbb{P}(B \mid A) \mathbb{P}(A)}{\mathbb{P}(B)}
$$

$$
\begin{aligned}
\mathbb{P}(F) & =\sum_{i=1}^{n} \mathbb{P}\left(F \mid E_{i}\right) \mathbb{P}\left(E_{i}\right) \quad E_{i} \text { partition } \Omega \\
& =\sum_{i=1}^{n} \operatorname{Pr}(E: \cap F)
\end{aligned}
$$

Bayes Theorem with Law of Total Probability

Bayes Theorem with LTP: Let $E_{1}, E_{2}, \ldots, E_{n}$ be a partition of the sample space, and F and event. Then,

$$
P\left(E_{1} \mid F\right)=\frac{P\left(F \mid E_{1}\right) P\left(E_{1}\right)}{P(F)}=\frac{P\left(F \mid E_{1}\right) P\left(E_{1}\right)}{\sum_{i=1}^{n} P\left(F \mid E_{i}\right) P\left(E_{i}\right)}
$$

Simple Partition: In particular, if E is an event with non-zero probability, then

$$
P(E \mid F)=\frac{P(F \mid E) P(E)}{P(F \mid E) P(E)+P\left(F \mid E^{C}\right) P\left(E^{C}\right)}
$$

Example - Zika Testing

A disease caused by Zika virus that's spread through mosquito bites.

Usually no or mild symptoms (rash); sometimes severe symptoms (paralysis).

During pregnancy: may cause birth defects.

Suppose you took a Zika test, and it returns "positive", what is the likelihood that you actually have the disease?

- Tests for diseases are rarely 100% accurate.

2: have Zika
T : tests positive.
Example - Zika Testing

Suppose we know the following Zika stats

- A test is 98% effective at detecting Zika ("true positive")
- However, the test yields a "false positive" 1% of the time

$$
\begin{aligned}
& \operatorname{Pr}(T / Z)=0.98 \\
& \operatorname{Pr}(T / Z)=0.01
\end{aligned}
$$

- 0.5% of the US population has Zika.

$$
\operatorname{Pr}(2)=0.005
$$

What is the probability you have Zika (event Z) if you test positive (event T).

$$
P(z \mid T)
$$

https://pollev.com/ annakarlin185
A) Less than 0.25
B) Between 0.25 and 0.5
C) Between 0.5 and 0.75
D) Between 0.75 and 1

2: have Zika
T : tests positive.
Example - Zika Testing

Suppose we know the following Zika stats

- A test is 98% effective at detecting Zika ("true positive")
- However, the test may yield a "false positive" 1% of the time

$$
\begin{aligned}
& \mathscr{I} \\
& \operatorname{Pr}(T / 2)=0.98 \\
& \operatorname{Pr}\left(T / \frac{2}{2}\right)=0.01
\end{aligned}
$$

- 0.5% of the US population has Zika.

$$
\operatorname{Pr}(2)=0.005
$$

What is the probability you have Zika (event Z) if you test positive (event T).

$$
\begin{array}{rl}
\operatorname{Pr}(Z \mid T) & =\frac{\operatorname{Pr}(T / 2) \operatorname{Pr}(2)}{\operatorname{Pr}(T)}=\frac{0.98 \cdot 0.005}{0.01485} \\
\operatorname{Pr}(T) & =\operatorname{Pr}(T \mid z) \operatorname{Pr}(2)+\operatorname{Pr}(T \mid \overline{2}) \operatorname{Pr}(\overline{2}) \\
0.98 \quad 0.005 & 0.01 \\
& =0.9295 \\
0.01485
\end{array}
$$

6

Example - Zika Testing

Have zika blue, don’t pink
Suppose we know the following Zika stats

- A test is 98% effective at detecting Zika ("true positive") 100%

$$
\operatorname{PrT}(2)=1
$$

- However, the test may yield a "false positive" 1% of the time $10 / 995$ = approximately 1%
- 0.5% of the US population has Zika. 5% have it.

What is the probability you have Zika (event Z) if you test positive (event T).

Suppose we had 1000 people:

- 5 have Zika and test positive
- 985 do not have Zika and test negative
- 10 do not have Zika and test positive

$$
\frac{5}{5+10}=\frac{1}{3} \approx 0.33
$$

Demo

Philosophy - Updating Beliefs

While it's not 98% that you have the disease, your beliefs changed drastically

Z = you have Zika
T = you test positive for Zika

Prior: $\mathrm{P}(\mathrm{Z})$

Example - Zika Testing
Suppose we know the following Zika stats

- A test is 98% effective at detecting Zika ("true positive") $\operatorname{Pr}(T / Z)=0.98$
- However, the test may yield a "false positive" 1% of the time
- 0.5% of the US population has Zika.

What is the probability you test negative (event \bar{T}) if you have Zika (event Z)?

$$
\operatorname{Pr}(\bar{T} / 2)=1-\operatorname{Pr}(T / 2)=0.02
$$

Conditional Probability Define a Probability Space
The probability conditioned on A follows the same properties as (unconditional) probability.

Example. $\mathbb{P}\left(\mathcal{B}^{c} \mid \mathcal{A}\right)=1-\mathbb{P}(\mathcal{B} \mid \mathcal{A})$

Conditional Probability Define a Probability Space

The probability conditioned on A follows the same properties as (unconditional) probability.

Example. $\mathbb{P}\left(\mathcal{B}^{c} \mid \mathcal{A}\right)=1-\mathbb{P}(\mathcal{B} \mid \mathcal{A})$

Formally. (Ω, \mathbb{P}) is a probability space $+\mathbb{P}(\mathcal{A})>0$

Today:

- Chain Rule
- Independence
- Sequential Process

Chain Rule

$$
\begin{aligned}
\underline{\mathbb{P}(\mathcal{B} \mid \mathcal{A})}=\frac{\mathbb{P}(\mathcal{A} \cap \mathcal{B})}{\mathbb{P}(\mathcal{A})} \Rightarrow \frac{\mathbb{P}(\mathcal{A}) \mathbb{P}(\mathcal{B} \mid \mathcal{A})=\mathbb{P}(\mathcal{A \cap B})}{\mathbb{N}} \\
\begin{aligned}
\operatorname{P(A_{1}\cap A_{2}} \cap \underbrace{}_{B}) & =\operatorname{Pr}\left(A_{3} \mid A_{1} \cap A_{2}\right) \operatorname{Pr}\left(A_{1} \cap A_{2}\right) \\
& =\operatorname{Pr}\left(A_{3} \mid A_{1} \cap A_{2}\right) \operatorname{Pr}\left(A_{2} \mid A_{1}\right) \operatorname{Pr}\left(A_{1}\right)
\end{aligned}
\end{aligned}
$$

Chain Rule

$$
\mathbb{P}(\mathcal{B} \mid \mathcal{A})=\frac{\mathbb{P}(\mathcal{A} \cap \mathcal{B})}{\mathbb{P}(\mathcal{A})} \quad \square \mathbb{P}(\mathcal{A}) \mathbb{P}(\mathcal{B} \mid \mathcal{A})=\mathbb{P}(\mathcal{A} \cap \mathcal{B})
$$

Theorem. (Chain Rule) For events $\mathcal{A}_{1}, \mathcal{A}_{2}, \ldots, \mathcal{A}_{n}$,

$$
\begin{aligned}
\underline{\mathbb{P}\left(\mathcal{A}_{1} \cap \cdots \cap \mathcal{A}_{n}\right)}=\underline{\mathbb{P}\left(\mathcal{A}_{1}\right)} \cdot & \underline{\mathbb{P}\left(\mathcal{A}_{2} \mid \mathcal{A}_{1}\right)} \cdot \mathbb{P}(\underbrace{}_{\mathcal{A}_{3} \mid \mathcal{A}_{1} \cap \mathcal{A}_{2}}) \\
& \cdots \mathbb{P}\left(\mathcal{A}_{n} \mid \mathcal{A}_{1} \cap \mathcal{A}_{2} \cap \cdots \cap \mathcal{A}_{n-1}\right)
\end{aligned}
$$

An easy way to remember: We have n tasks and we can do them sequentially, conditioning on the outcome of previous tasks

Chain Rule Example

Have a Standard 52－Card Deck．Shuffle It，and draw the top 3 cards in order．（uniform probability space）．

 $\frac{1}{51} \underset{\frac{1}{50}}{\substack{\text { filler } \\ \text { sean }}}$ B： 10 of Clubs Second C： 4 of Diamonds Third

$$
=\frac{\text { 华ar AS }}{\#}=\frac{S!!}{S d!}
$$

$$
\operatorname{Pr}(10 C \text { and } / \text { AS inst })=\frac{\operatorname{Pr}(\text { (oC and } \cap \text { AS hast })}{\operatorname{Pr}(\text { ASSist })}
$$

Chain Rule Example $\operatorname{Pr}(10$ clemos 2nd $)=\frac{1}{52}$

Have a Standard 52-Card Deck. Shuffle It, and draw the top 3 cards in order. (uniform probability space).

$$
\begin{gathered}
\mathbb{P}(A) \cdot \mathbb{P}(B \mid A) \cdot \mathbb{P}(C \mid A \cap B) \\
\frac{1}{52} \cdot \frac{1}{51} \cdot \frac{1}{50}
\end{gathered}
$$

$$
\text { C: } 4 \text { of Diamonds Third }
$$

Independence

Definition. Two events \mathcal{A} and \mathcal{B} are (statistically) independent if
$\widehat{\mathbb{P}(\mathcal{A} \cap \mathcal{B})=\mathbb{P}(\mathcal{A}) \cdot \mathbb{P}(\mathcal{B}) \cdot} \ll$
Alternatively,

- If $\mathbb{P}(\mathcal{A}) \neq 0$, equivalent to $\mathbb{P}(\mathcal{B} \mid \mathcal{A})=\mathbb{P}(B)$
- If $\mathbb{P}(\mathcal{B}) \neq 0$, equivalent to $\mathbb{P}(\mathcal{A} \mid \mathcal{B})=\mathbb{P}(\mathcal{A})$

[^0]
Example -- Independence

Toss a coin 3 times. Each of 8 outcomes equally likely.

- $A=\{$ at most one $T\}=\{\mathrm{HHH}, \mathrm{HHT}, \mathrm{HTH}, \mathrm{THH}\}$
- $B=\{$ at most 2 Heads $\}=\{\mathrm{HHH}\}^{(0)}$ Independent?

$$
\mathbb{P}(\mathcal{A} \cap \mathcal{B}) \stackrel{?}{=} \mathbb{P}(\mathcal{A}) \cdot \mathbb{P}(\mathcal{B})
$$

$\operatorname{Pr}(A)=\frac{1}{2}$
$\operatorname{Pr}(B)=\frac{7}{8}$
$\operatorname{Pr}(A \cap B)=\frac{3}{8}$
Poll:
A. Yes, independent
B. No
pollev/annakarlin185

Often probability space (Ω, \mathbb{P}) is defined using independence

Example - Network Communication

$$
\left.\begin{array}{rl}
\operatorname{Pr}(E \cup F) & =P(E)+P(F) \\
& -P(E \cap F)
\end{array}\right]
$$

Each link works with the probability given, independently. What's the probability A and D can communicate?

- mutually end events disjoin events

Example - Network Communication

Each link works with the probability given, independently. What's the probability A and D can communicate?

$$
\begin{aligned}
& \mathbb{P}(A D)=\mathbb{P}(A B \cap B D \text { or } A C \cap C D) \\
& \quad=\mathbb{P}(A B \cap B D)+\mathbb{P}(A C \cap C D)-\mathbb{P}(A B \cap B D \cap A C \cap C D)
\end{aligned}
$$

$$
\mathbb{P}(A B \cap B D)=\mathbb{P}(A B) \cdot \mathbb{P}(B D)=p q
$$

$$
\mathbb{P}(A C \cap C D)=\mathbb{P}(A C) \cdot \mathbb{P}(C D)=r s
$$

$\mathbb{P}(A B \cap B D \cap A C \cap C D)=\mathbb{P}(A B) \cdot \mathbb{P}(B D) \cdot \mathbb{P}(A C) \cdot \mathbb{P}(C D)=$ pqrs

Example - Biased coin
We have a biased coin comes up Heads with probability 2/3; Each flip is independent of all other fips. Suppose it is tossed 3 times.

$$
\begin{aligned}
& \mathbb{P}(H H H)=\operatorname{Pr}(H) \operatorname{Pr}(H) \operatorname{Pr}(H)=\left(\frac{2}{3}\right)^{3} \\
& \mathbb{P}(T T T)=\operatorname{Pr}(T) \operatorname{Pr}(T) \operatorname{P}(T)=\left(\frac{1}{3}\right)^{3} \\
& \mathbb{P}(H T T)=\operatorname{Pr}(H) \operatorname{P}(T) \operatorname{P}(T)=\frac{2}{3}\left(\frac{1}{3}\right)^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Pr}\left(A_{B} B\right)=0 \\
& f(B)=0
\end{aligned}
$$

Example - Biased coin

We have a biased coin comes up Heads with probability 2/3, independently of other flips. Suppose it is tossed 3 times.
$\mathbb{P}(2$ heads in 3 tosses $)=$
$=P(H H T, H T H, T H H)$
https://pollev.com/ annakarlin185
\rightarrow A) $(2 / 3)^{2} 1 / 3$
$\frac{\text { B) } 2 / 3}{\frac{\text { (C) } 3(2 / 3)^{2} 1 / 3}{\text { D) }(1 / 3)^{2}}}$

[^0]: "The probability that \mathcal{B} occurs after observing \mathcal{A} " -- Posterior
 = "The probability that \mathcal{B} occurs" -- Prior

