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PageRank: Some History

The year was 1997
– Bill Clinton in the White House
– Deep Blue beat world chess champion (Kasparov)

The internet was not like it was today. Finding stuff was hard!
– In Nov 1997, only one of the top 4 search engines actually found

itself when you searched for it
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The Problem

Search engines worked by matching words in your queries to 
documents. 

Not bad in theory, but in practice there are lots of documents 
that match a query.
– Search for Bill Clinton, top result is ‘Bill Clinton Joke of the Day’
– Susceptible to spammers and advertisers
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The Fix: Ranking Results

• Start by doing filtering to relevant documents (with decent 
textual match). 

• Then rank the results based on some measure of ‘quality’ or 
‘authority’.

Key question: How to define ‘quality’ or ‘authority’?

Enter two groups:
– Jon Kleinberg (professor at Cornell)
– Larry Page and Sergey Brin (Ph.D. students at Stanford)
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Both groups had the same brilliant idea 

Larry Page and Sergey Brin (Ph.D. students at Stanford)
– Took the idea and founded Google, making billions

Jon Kleinberg (professor at Cornell)
– MacArthur genius prize, Nevanlinna Prize and many other 

academic honors
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PageRank - Idea

Take into account directed graph structure of the web. Use 
hyperlink analysis to compute what pages are high quality or 
have high authority. Trust the internet itself define what is 
useful via its links.
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PageRank - Idea

Idea 1: think of each link as a citation “vote of quality”

Rank pages by in-degree?
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PageRank - Idea

Idea 1: think of each link as a citation “vote of quality”

Rank pages by in-degree?

Problems:
• Spamming
• Some linkers not discriminating
• Not all links created equal
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PageRank - Idea

Idea 2: perhaps we should weight the links somehow and then 
use the weights of the in-links to rank pages
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Inching towards Pagerank

Web page has high quality if it’s linked to by lots of high quality
pages.

A page is high quality if it links to lots of
high quality pages

recursive definition!
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Inching towards Pagerank

• If web page x has d outgoing links, one of which goes to y, 
this contributes 1/d to the importance of y.

• But we want to take into account the importance of x.
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Gives the following equations

Idea: Use the transition matrix defined by a random walk on the 
web 𝑷 to compute quality of webpages. Namely, find 𝒒 such that

𝒒𝑷 = 𝒒

Look familiar?
This is the stationary distribution for the Markov chain defined by a 
random surfer. Starts at some node (webpage) and randomly 
follows a link to another.
– Use stationary distribution of her surfing patterns after a long time as 

notion of quality
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Issues with PageRank

• How to handle dangling nodes (dead ends)? 
• How to handle Rank sinks – group of pages that only link to 

each other?

Both solutions can be solved by “teleportation”
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Final PageRank Algorithm

• Make a Markov Chain with one state for each webpage on the internet 
with the transition probabilities 𝑷!" =

#
$%&'()(!)

.

• Use a modified random walk. At each point in time, if the surfer is at 
some webpage 𝑥.
– With probability 𝑝, take a step to one of the neighbors of 𝑥 (equally likely)
– With probability 1 − 𝑝, “teleport” to a uniformly random page in the whole 

internet.
• Compute stationary distribution 𝝅 of this perturbed Markov chain. 
• Define the PageRank of a webpage 𝑖 as the stationary probability 𝜋! . 
• Find all pages with decent textual match to search and then order those 

pages by PageRank!
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PageRank - Example

15



It Gets More Complicated

While this basic algorithm was the defining idea that launched 
Google on their path to success, this is far from the end to 
optimizing search.

Nowadays, Google has a LOT more secret sauce to ranking 
pages most of which they don’t reveal for 1) competitive 
advantage and 2) avoid gaming their algorithm.
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Brain Break



Tail Bounds (Idea)

Bounding the probability a random variable is far from its 
mean. Usually statements of the form:

Pr 𝑋 ≥ 𝑎 ≤ 𝑏
Pr |𝑋 − 𝐸 𝑋 | ≥ 𝑎 ≤ 𝑏

Useful tool when
• An approximation that is easy to compute is sufficient
• The process is too complex to analyze exactly
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A gambling game

• With probability 0.99, you pay me $10
• With probability 0.01, I pay you $1000

• Do you want to play?
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Takeaway

• A random variable might almost never be at least its 
expectation. 

• Similarly, a random variable might almost always be at least 
its expectation.
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Changes to minimum 

Compute-Min
min := 
For t := 1 to N

If data [t] < min
min := data [t]
print (“The new minimum is “, min)            *

Suppose that the data array contains n  distinct numbers.
All permutations are equally likely
E( number of times line * is executed) = 

21



• E(𝑋) about  ln (𝑛)
• Possible that Pr ( 𝑋 ≥ 𝑛) = 0.99?

• Possible that Pr ( 𝑋 ≥ 𝑛/2) = 0.99?
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Agenda

• Markov’s Inequality
• Chebyshev’s Inequality
• The Law of Large Numbers
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Markov’s Inequality 
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Theorem. Let 𝑋 be a random variable taking only non-negative values. 
Then, for any 𝑡 > 0,

ℙ 𝑋 ≥ 𝑡 ≤ 𝔼 "
#

. 

ℙ 𝑋 ≥ 𝑡 ⋅ 𝔼 𝑋 ≤ $
#
. 

Incredibly simplistic – only requires that the random variable is non-negative and 
only needs you to know expectation. You don’t need to know anything else about 
the distribution of 𝑋.



Markov’s Inequality – Proof  
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Theorem. Let 𝑋 be a (discrete) random variable taking 
only non-negative values. Then, for any 𝑡 > 0,

ℙ 𝑋 ≥ 𝑡 ≤ 𝔼 "
#

. 

𝔼 𝑋 =+
%

𝑥 ⋅ ℙ(𝑋 = 𝑥)

=+
%&#

𝑥 ⋅ ℙ(𝑋 = 𝑥) ++
%'#

𝑥 ⋅ ℙ(𝑋 = 𝑥)



Markov’s Inequality – Proof  
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Theorem. Let 𝑋 be a (discrete) random variable taking 
only non-negative values. Then, for any 𝑡 > 0,

ℙ 𝑋 ≥ 𝑡 ≤ 𝔼 "
#

. 

𝔼 𝑋 =+
%

𝑥 ⋅ ℙ(𝑋 = 𝑥)

=+
%&#

𝑥 ⋅ ℙ(𝑋 = 𝑥) ++
%'#

𝑥 ⋅ ℙ(𝑋 = 𝑥)

≥+
%&#

𝑥 ⋅ ℙ(𝑋 = 𝑥)

≥+
%&#

𝑡 ⋅ ℙ(𝑋 = 𝑥) = 𝑡 ⋅ ℙ(𝑋 ≥ 𝑡)

≥ 0 because 𝑥 ≥ 0
whenever ℙ 𝑋 = 𝑥 ≥
0 (takes only non-
negative values)  

Follows by re-arranging terms 
… 



Example – Binomial Random Variable

Let 𝑋 be Binomial RV with parameters. 𝑛, 𝑝
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𝔼 𝑋 =
𝑛
2

What is the probability that 𝑋 ≥ ()
*

? 

Markov’s inequality: ℙ 𝑋 ≥ ()
*

≤ *
()
⋅ )
+
= +

( Can we do better?

Markov’s	inequality
ℙ 𝑋 ≥ 𝑡 ≤ 𝔼 )

*
. 



Agenda

• Markov’s Inequality
• Chebyshev’s Inequality
• The Law of Large Numbers
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Using variance

• If we know more about the random variable, e.g. its 
variance, we can get a better bound!
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Chebyshev’s Inequality 
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Theorem. Let 𝑋 be a random variable. Then, for any 𝑡 > 0,

ℙ |𝑋 − 𝔼 𝑋 | ≥ 𝑡 ≤ ,-. "
#!

. 

Proof: Define 𝑍 = 𝑋 − 𝔼 𝑋

ℙ |𝑍| ≥ 𝑡 = ℙ 𝑍+ ≥ 𝑡+ ≤
𝔼 𝑍+

𝑡+
=
Var 𝑋
𝑡+

Markov’s inequality (𝑍+ ≥ 0)

Definition of Variance

|𝑍| ≥ 𝑡 iff 𝑍+ ≥ 𝑡+

Markov’s	inequality
ℙ 𝑋 ≥ 𝑡 ≤ 𝔼 )

*
. 



Example – Binomial Random Variable

Let 𝑋 be Binomial RV with parameters. 𝑛, 𝑝 = 0.5
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𝔼 𝑋 =
𝑛
2

What is the probability that 𝑋 ≥ ()
*

? 

Markov’s inequality: ℙ 𝑋 ≥ ()
*

≤ *
()
⋅ )
+
= +

(

𝑉𝑎𝑟 𝑋 =

Chebychev’s inequality: ℙ 𝑋 ≥ ()
*

≤

Chebychev’s Inequality
ℙ |𝑋 − 𝔼 𝑋 | ≥ 𝑡 ≤ ,-. )

*!
. 



Chevychev gives us a pretty good bound. But still not great.

For 1000 flips, probability of getting at least 750 heads is at most 0.02
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The truth for n = 1000:

Chebychev’s inequality: ℙ 𝑋 ≥ ()
*

≤ *
)

ℙ 𝑋 ≥ ()
*

< 0.0000000000000000000000000000000000000000000067



The Law of Large Numbers

(Weak version) Let 𝑋!, 𝑋", … , 𝑋# be i.i.d. random variables with 
mean 𝜇, and let 7𝑋 =!

#
∑$%!
# 𝑋$ .  Then

lim
#→'

𝑃 (| 7𝑋 -𝜇 > 𝜖 = 0.
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Chebychev’s Inequality
ℙ |𝑋 − 𝔼 𝑋 | ≥ 𝑡 ≤ ,-. )

*!
. 



Tail Bounds

Useful for approximations of complex systems. How good the 
approximation is depends on the actual distribution and the 
context you are using it in.
– Usually loose upper-bounds are okay when designing for worst-

case

Generally, the more you know about your random variable the 
better tail bounds you can get.
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