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Agenda

• Recap: Markov Chains
• Stationary Distributions
• Application: PageRank
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So far, a single-shot random process
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Definition: A discrete-time stochastic process (DTSP) is a sequence of 
random variables !(#), !(%),!('), . . . where !(() is the value at time $.

Last time / Today : 
See a very special type of DTSP 
called Markov Chains 
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Transition Probability Matrix
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%)( , %*( , %+( = Pr !(() = work , Pr(!(() = surf , Pr(!(() = email))
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Transition Probability Matrix
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%)( , %*( , %+( = (%)(,% , %*(,% , %+(,% )

è =(() = =((,%) 6
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=(() = (%)( , %*( , %+( )

-$% , -&% , -'% = Pr 1(%) = work , Pr(1(%) = surf , Pr(1(%) = email))
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Apply !(") = !("$%) # inductively. 

è !(") = !(&) #"
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The t-step walk !! "(!)= "(!$%) !
"(!) = "(&) !!
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What do these 
numbers tell us 
about !(")? 
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Observation

If $(") = $("$%) then it will never change again!

Called a “stationary distribution” and has a special name 
% = (&' , &( , &))

Solution to % = % #
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Solving for Stationary Distribution
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6 =
.4 .6 0
.1 .6 .3
.5 0 .5

è As t → ∞, =(() → B !!

Stationary Distribution satisfies
• B = BC, where  B = (>= , >*, >+)
• >= + >* + >+ = 1
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The Fundamental Theorem of Markov Chains 

If a Markov chain is “irreducible” and “aperiodic”, then it has a 
unique stationary distribution. 

Moreover, as ( → ∞, for all 0, 1, #!"# = &"
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Finite Markov Chains

• Defined by a set of states and a transition probability matrix:
– A set of # states S={1, 2, 3, … n}
– The state at time t is denoted by "($)
– A transition matrix P, dimension # × #

%!" = Pr " $%& = ) X($) = +)
– Has Markov property: State at time - depends only on state at time - − 1

– This does not mean that state at time - is independent of state at times 0, 
…,- − 2 !  Just that all of the dependency is captured by " $'&
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State at time t and matrix powers

• Pr ! % = E X # = G) = 6!"
• Pr !(') = E X # = G) =
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State at time t and matrix powers

• Pr ! % = E X # = G) = 6!"
• Pr !(') = E X # = G) = (6B)!"
• Pr !(?) = E X # = G) =

14

C is



Finite Markov Chains

• Defined by a set of states and a transition probability matrix:
– A set of H states {1, 2, 3, … n}
– The state at time t is denoted by !(()
– A transition matrix P, dimension H × H

6!" = Pr ! (C% = E X(() = G)

– More generally, Pr 3 # = 1 X(%) = 0) = #''(
– Similarly, Pr 3 #() = 1 X()) = 0) = #''(
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!(#) = ($*# , $+# , … , $,# ) where $! # = Pr(X(#) = 0)
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Finite Markov Chains

• Defined by a set of states and a transition probability matrix:
– A set of H states {1, 2, 3, … n}
– The state at time t is denoted by !(()
– A transition matrix P, dimension H × H

6!" = Pr ! (C% = E X(() = G)
– More generally, Pr ! ( = E X(#) = G) = 6D!"
– Similarly, Pr ! (CE = E X(E) = G) = 6D!"
– =(() = (%%( , %'( , … , %F( ) where %G ( = Pr(X(() = G)
–!(#) = !(#-*) # =⇒ !(#) = !(%) ##
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Stationary Distribution of a Markov Chain
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Definition. The stationary distribution of a Markov Chain with H
states is the H-dimensional row vector B (which must be a probability 
distribution – nonnegative and sums to 1) such that

B6 = B

Intuition: Distribution over states at next step is the same as the distribution over 
states at the current step



Stationary Distribution of a Markov Chain
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Intuition: !(#) is the distribution of being at each state at time (
computed by !(#) = !(%)##. As ( gets large ! # ≈ ! #(* .
Theorem. The Fundamental Theorem of Markov Chains says that 
(under some minor technical conditions), for a Markov Chain with 
transition probabilities C and for any starting distribution =(#) over 
the states

lim
(→I

=(#)6( = B

where B is the stationary distribution of 6 (i.e., B6 = B )



Another Example: Random Walks

Suppose we start at node 1, and at each step
transition to a neighboring node with equal
probability.

This is called a ”random walk” on this graph.
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Example: Random Walks
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Example: Random Walks
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Example: Random Walks
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Suppose we know that " 2 = 2. What is Pr " 3 = 3 ?
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Brain Break
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Agenda

• Recap: Markov Chains
• Stationary Distributions
• PageRank
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PageRank: Some History

The year was 1997
– Bill Clinton in the White House
– Deep Blue beat world chess champion (Kasparov)

The internet was not like it was today. Finding stuff was hard!
– In Nov 1997, only one of the top 4 search engines actually found

itself when you searched for it
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The Problem

Search engines worked by matching words in your queries to 
documents. 

Not bad in theory, but in practice there are lots of documents 
that match a query.
– Search for Bill Clinton, top result is ‘Bill Clinton Joke of the Day’
– Susceptible to spammers and advertisers
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The Fix: Ranking Results

• Start by doing filtering to relevant documents (with decent 
textual match). 

• Then rank the results based on some measure of ‘quality’ or 
‘authority’.

Key question: How to define ‘quality’ or ‘authority’?

Enter two groups:
– Jon Kleinberg (professor at Cornell)
– Larry Page and Sergey Brin (Ph.D. students at Stanford)
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Both groups had the same brilliant idea 

Larry Page and Sergey Brin (Ph.D. students at Stanford)
– Took the idea and founded Google, making billions

Jon Kleinberg (professor at Cornell)
– MacArthur genius prize, Nevanlinna Prize and many other 

academic honors
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PageRank - Idea

Take into account directed graph structure of the web. Use 
hyperlink analysis to compute what pages are high quality or 
have high authority. Trust the internet itself define what is 
useful via its links.
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PageRank - Idea

Idea 1: think of each link as a citation “vote of quality”

Rank pages by in-degree?
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PageRank - Idea

Idea 1: think of each link as a citation “vote of quality”

Rank pages by in-degree?

Problems:
• Spamming
• Some linkers not discriminating
• Not all links created equal
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PageRank - Idea

Idea 2: perhaps we should weight the links somehow and then 
use the weights of the in-links to rank pages
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Inching towards Pagerank

Web page has high quality if it’s linked to by lots of high quality
pages.

A page is high quality if it links to lots of
high quality pages

recursive definition!
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Inching towards Pagerank

• If web page x has d outgoing links, one of which goes to y, 
this contributes 1/d to the importance of y.

• But we want to take into account the importance of x.
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Gives the following equations

Idea: Use the transition matrix defined by a random walk on the 
web ! to compute quality of webpages. Namely, find " such that

"! = "

Look familiar?
This is the stationary distribution for the Markov chain defined by a 
random surfer. Starts at some node (webpage) and randomly 
follows a link to another.
– Use stationary distribution of her surfing patterns after a long time as 

notion of quality
36



Issues with PageRank

• How to handle dangling nodes (dead ends)? 
• How to handle Rank sinks – group of pages that only link to 

each other?

Both solutions can be solved by “teleportation”
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Final PageRank Algorithm

• Make a Markov Chain with one state for each webpage on the internet 
with the transition probabilities !#$ = %

&'()*+(#).

• Use a modified random walk. At each point in time, if the surfer is at 
some webpage #.
– With probability 3, take a step to one of the neighbors of 4 (equally likely)
– With probability 1 − 3, “teleport” to a uniformly random page in the whole 

internet.
• Compute stationary distribution $ of this perturbed Markov chain. 
• Define the PageRank of a webpage % as the stationary probability &# . 
• Find all pages with decent textual match to search and then order those 

pages by PageRank!
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PageRank - Example

39



It Gets More Complicated

While this basic algorithm was the defining idea that launched 
Google on their path to success, this is far from the end to 
optimizing search.

Nowadays, Google has a LOT more secret sauce to ranking 
pages most of which they don’t reveal for 1) competitive 
advantage and 2) avoid gaming their algorithm.
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