CSE 312
 Foundations of Computing II

Lecture 24: Wrap up discussion of estimators, Markov chains

wPAUL G. ALLEN SCHOOL OF COMPUTER SCIENCE \& ENGINEERING

Anna R. Karlin

Slide Credit: Based on Stefano Tessaro's slides for 312 19au incorporating ideas from Ryan O’Donnell, Alex Tsun, Rachel Lin, Hunter Schafer \& myself

MLE Recipe

1. Input Given n iid samples x_{1}, \ldots, x_{n} from parametric model with parameter θ.
2. Likelihood Define your likelihood $\mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta\right)$.

- For discrete $\quad \mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta\right)=\prod_{i=1}^{n} \operatorname{Pr}\left(x_{i} ; \theta\right)$
- For continuous $\mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta\right)=\prod_{i=1}^{n} f\left(x_{i} ; \theta\right)$

3. \log Compute $\ln \mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta\right)$
4. Differentiate Compute $\frac{\partial}{\partial \theta} \ln \mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta\right)$
5. Solve for $\hat{\theta}$ by setting derivative to 0 and solving for max.

Generally, you need to do a second derivative test to verify it is a maximum, but we won't ask you to do that in CSE 312.
n samples $x_{1}, \ldots, x_{n} \in \mathbb{R}$ from Gaussian $\mathcal{N}\left(\mu, \sigma^{2}\right)$. Most likely μ and σ^{2} ?

Two-parameter optimization

Normal outcomes x_{1}, \ldots, x_{n}
Goal: estimate $\theta_{1}=\mu=$ expectation and $\theta_{2}=\sigma^{2}=$ variance

$$
\begin{aligned}
& L\left(x_{1}, \ldots, x_{n} \mid \theta_{1}, \theta_{2}\right)=\left(\frac{1}{\sqrt{2 \pi \theta_{2}}}\right)^{n} \prod_{i=1}^{n} e^{\frac{\left(x_{i}-\theta_{1}\right)^{2}}{2 \theta_{2}}} \\
& \ln L\left(x_{1}, \ldots, x_{n} \mid \theta_{1}, \theta_{2}\right)= \\
& =-n \frac{\ln \left(2 \pi \theta_{2}\right)}{2}-\sum_{i=1}^{n} \frac{\left(x_{i}-\theta_{1}\right)^{2}}{2 \theta_{2}}
\end{aligned}
$$

Two-parameter estimation

$$
\ln L\left(x_{1}, \ldots, x_{n} \mid \theta_{1}, \theta_{2}\right)=-n \frac{\ln \left(2 \pi \theta_{2}\right)}{2}-\sum_{i=1}^{n} \frac{\left(x_{i}-\theta_{1}\right)^{2}}{2 \theta_{2}}
$$

We need to find a solution $\hat{\theta}_{1}, \hat{\theta}_{2}$ to

$$
\begin{aligned}
& \frac{\partial}{\partial \theta_{1}} \ln L\left(x_{1}, \ldots, x_{n} \mid \theta_{1}, \theta_{2}\right)=0 \\
& \frac{\partial}{\partial \theta_{2}} \ln L\left(x_{1}, \ldots, x_{n} \mid \theta_{1}, \theta_{2}\right)=0
\end{aligned}
$$

MLE estimates for mean and variance.

Normal outcomes x_{1}, \ldots, x_{n}

$$
\hat{\theta}_{\mu}=\frac{\sum_{i}^{n} x_{i}}{n}
$$

MLE estimator for
expectation

$$
\hat{\theta}_{\sigma^{2}}=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\hat{\theta}_{\mu}\right)^{2}
$$

MLE estimator for variance

MLE Recipe

1. Input Given n iid samples x_{1}, \ldots, x_{n} from parametric model with multiple parameters $\boldsymbol{\theta}=\left(\theta_{1}, \theta_{2}, . ., \theta_{k}\right)$
2. Likelihood Define your likelihood function $\mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \boldsymbol{\theta}\right)$.

- For discrete $\quad \mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \boldsymbol{\theta}\right)=\prod_{i=1}^{n} \operatorname{Pr}\left(x_{i} ; \boldsymbol{\theta}\right)$
- For continuous $\mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \boldsymbol{\theta}\right)=\prod_{i=1}^{n} f\left(x_{i} ; \boldsymbol{\theta}\right)$

3. \log Compute $\ln \mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta\right)$
4. Differentiate Compute $\frac{\partial}{\partial \theta_{i}} \ln \mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta\right)$ for each i
5. Solve for $\widehat{\theta}$ by setting derivatives to 0 and solving system of equations.

Generally, you need to verify that you've found a maximum, but we won't ask you to do that in CSE 312.

Agenda

- Properties of estimators
- Markov chains

When is an estimator good?

$\theta=\underline{\text { unknown }}$ parameter

Definition. An estimator of parameter θ is an unbiased estimator

$$
\mathbb{E}\left(\hat{\theta}_{n}\right)=\theta .
$$

Example - Consistency

Normal outcomes x_{1}, \ldots, x_{n} iid according to $\mathcal{N}\left(\mu, \sigma^{2}\right) \quad$ Assume: $\sigma^{2}>0$

$$
\hat{\theta}_{\mu}=\frac{\sum_{i}^{n} x_{i}}{n}
$$

Unbiased

$$
\widehat{\Theta}_{\sigma^{2}}=\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\widehat{\Theta}_{\mu}\right)^{2}
$$

Biased!

Consistent Estimators \& MLE

$\theta=\underline{\text { unknown }}$ parameter
Definition. An estimator is unbiased if $\mathbb{E}\left(\hat{\theta}_{n}\right)=\theta$ for all $n \geq 1$.
Definition. An estimator is consistent if $\lim _{n \rightarrow \infty} \mathbb{E}\left(\hat{\theta}_{n}\right)=\theta$.

Theorem. MLE estimators are consistent.
(But not necessarily unbiased)
$\widehat{\Theta}_{\sigma^{2}}$ is biased, but consistent.

$$
\widehat{\Theta}_{\sigma^{2}}=\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\widehat{\Theta}_{\mu}\right)^{2}
$$

linearity

$$
\begin{aligned}
\mathbb{E}\left(\widehat{\Theta}_{\sigma^{2}}\right) & =\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\left[\left(X_{i}-\widehat{\Theta}_{1}\right)^{2}\right]=\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\left[\left(X_{i}-\frac{1}{n} \sum_{j=1}^{n} X_{j}\right)^{2}\right] \\
& \ldots \\
& =\left(1-\frac{1}{n}\right) \sigma^{2}=\frac{n-1}{n} \sigma^{2}
\end{aligned}
$$

$\widehat{\Theta}_{\sigma^{2}}$ converges to σ^{2}, as $n \rightarrow \infty$.
$\widehat{\Theta}_{\sigma^{2}}$ is "consistent"

$$
S_{n}^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\widehat{\Theta}_{\mu}\right)^{2}
$$

Sample variance - Unbiased!

Agenda

- Properties of estimators
- Markov chains

So far, a single-shot random process

So far, a single-shot random process

Random

Process \rightarrow| Outcome |
| :---: |
| Distribution |
| D |

Many-step random process

So far, a single-shot random process


```
Today:
see a very special type of DTSP
Called a Markov Chain
```


Many-step random process

Definition: A discrete-time stochastic process (DTSP) is a sequence of random variables $X^{(0)}, X^{(1),} X^{(2)}, \ldots$ where $X^{(t)}$ is the value at time t.

A day in my life

A day in my life

$$
t=0
$$

Work

This type of probabilistic finite automaton is called a Markov Chain The next state depends only on the current state and not on the history

For ANY $t \geq 0$,
if I was working at time t, then at $t+1$
with probability 0.4 I continue working
with probability 0.6 , I switch to surfing, and
with probability 0,1 switch to emailing
This is called History Independent (similar to memoryless)

A day in my life

t
$q_{w}^{(t)}=\operatorname{Pr}\left(X^{(t)}=\right.$ work $)$
$q_{S}^{(t)}=\operatorname{Pr}\left(X^{(t)}=\right.$ surf $)$

$$
q_{E}^{(t)}=\operatorname{Pr}\left(X^{(t)}=\text { email }\right)
$$

1. What is the probability that I work at time 1?
2. What is the probability that I work at time 2?

$$
X^{(t)} \text { state I'm in at time } t \text { (random variable) }
$$

t	0	1	2
$q_{w}^{(t)}=\operatorname{Pr}\left(X^{(t)}=\right.$ work $)$			
$q_{S}^{(t)}=\operatorname{Pr}\left(X^{(t)}=\right.$ surf $)$			
$q_{E}^{(t)}=\operatorname{Pr}\left(X^{(t)}=\right.$ email $)$			

A day in my life

Many interesting questions

1. What is the probability that I work at time 1?
2. What is the probability that I work at time 2?
3. What is the probability that I work at time $\mathrm{t}=100$?
4. What is the probability that I'm working at some random time far in the future?

A day in my life
What is the probability I'm in each state at time t, as a function of the probability distribution over states at time t -1

$$
X^{(t)} \text { state I'm in at time } t \text { (random variable) }
$$

$$
\left(q_{w}^{(t)}, \quad q_{S}^{(t)}, \quad q_{E}^{(t)}\right)=\left(q_{w}^{(t-1)}, \quad q_{S}^{(t-1)}, \quad q_{E}^{(t-1)}\right)\left(\begin{array}{ccc}
.4 & .6 & 0 \\
.1 & .6 & .3 \\
.5 & 0 & .5
\end{array}\right)
$$

Transition Probability Matrix

$$
\begin{aligned}
& \boldsymbol{P}=\left(\begin{array}{ccc}
.4 & .6 & 0 \\
.1 & .6 & .3 \\
.5 & 0 & .5
\end{array}\right) \\
& \Rightarrow \boldsymbol{q}^{(t)}=\boldsymbol{q}^{(t-1)} \boldsymbol{P} \quad \boldsymbol{q}^{(t)}=\left(q_{w}^{(t)}, \quad q_{S}^{(t)}, \quad q_{E}^{(t)}\right)
\end{aligned}
$$

Apply $\boldsymbol{q}^{(t)}=\boldsymbol{q}^{(t-1)} \boldsymbol{P}$ inductively.

$$
\boldsymbol{P}=\left(\begin{array}{ccc}
.4 & .6 & 0 \\
.1 & .6 & .3 \\
.5 & 0 & .5
\end{array}\right)
$$

$\Rightarrow \boldsymbol{q}^{(t)}=\boldsymbol{q}^{(0)} \boldsymbol{P}^{t}$

The t-step walk \boldsymbol{P}^{t}

$$
\text { Recall } \boldsymbol{q}^{(t)}=\boldsymbol{q}^{(0)} \boldsymbol{P}^{t} \quad \boldsymbol{P}=\left(\begin{array}{ccc}
.4 & .6 & 0 \\
.1 & .6 & .3 \\
.5 & 0 & .5
\end{array}\right)
$$

$$
\begin{aligned}
& \boldsymbol{P}^{2}=\begin{array}{c}
W \\
W \\
E \\
E
\end{array}\left(\begin{array}{ccc}
.22 & .6 & E \\
.25 & .42 & .33 \\
.45 & .3 & .25
\end{array}\right) \\
& \boldsymbol{p}^{-3}=\begin{array}{c}
W \\
S \\
E
\end{array}\left(\begin{array}{ccc}
W & S & E \\
.238 & .492 & .270 \\
.307 & .402 & .291 \\
.335 & .450 & .215
\end{array}\right) \\
& \boldsymbol{R}^{10} \approx \begin{array}{c}
\\
\\
\\
\\
\\
E
\end{array}\left(\begin{array}{cccc}
W & S & E \\
.2940 & .4413 & .2648 \\
.2942 & .4411 & .2648 \\
.2942 & .4413 & .2648
\end{array}\right)
\end{aligned}
$$

What does this say
 about $\boldsymbol{q}^{(t)}$?

Observation

If $q^{(t)}=q^{(t-1)}$ then it will never change again!

Called a "stationary distribution" and has a special name

$$
\boldsymbol{\pi}=\left(\pi_{W}, \pi_{S}, \pi_{E}\right)
$$

Solution to $\pi=\pi P$

