## CSE 312 <br> Foundations of Computing II

## Lecture 22: Loose Ends and Maximum Likelihood Estimation

wPAUL G. ALLEN SCHOOL OF COMPUTER SCIENCE \& ENGINEERING

## Anna R. Karlin

Slide Credit: Based on Stefano Tessaro's slides for 312 19au incorporating ideas from Alex Tsun, Rachel Lin, Hunter Schafer \& myself ©)

## Feedback

- I'm going too fast for some of you.
- I'll pause more to give you a chance to ask questions.
- You ask more questions.
- Read the section or watch videos before class.
- Come to next class with questions about previous class.
- "Examples in class are too complex."
- I can't seem to please all of the people all of the time!
- Which material is in the book?
- Pretty much everything.
- Grades/quizzes/etc - don’t worry!
- "There needs to be more commenting on the python code to explain new syntax, like for calling objects from other classes."
- Please send a message on edstem pointing out places where you think more comments are needed and we can try to add some. [For both past and future psets]


## Law of Total Probability and Law of Total Expectation

Law of Total Probability. Let E be an event and let $Y$ be a discrete random variable that takes values $\{1,2, \ldots, n\}$. Then,

$$
\operatorname{Pr}[E]=\sum_{i=1}^{n} \operatorname{Pr}[E \mid Y=i] \operatorname{Pr}(Y=i)
$$

Law of Total Expectation. Let $X$ be a random variable and let $Y$ be a discrete random variable that takes values $\{1,2, \ldots, n\}$. Then,

$$
E[X]=\sum_{i=1}^{n} E[X \mid Y=i] \operatorname{Pr}(Y=i)
$$

## Law of Total Probability

Law of Total Probability (discrete). Let E be an event and let $Y$ be a discrete random variable that takes values $\{1,2, \ldots, n\}$. Then,

$$
\operatorname{Pr}[E]=\sum_{i=1}^{n} \operatorname{Pr}[E \mid Y=i] \operatorname{Pr}(Y=i)
$$

Law of Total Probability (cont). Let $E$ be an event and let $Y$ be a continuous random variable. Then,

$$
\operatorname{Pr}[E]=\int_{-\infty}^{+\infty} \operatorname{Pr}[E \mid Y=y] f_{Y}(y) \mathrm{d} y
$$

Example: Number of accidents a random person has in a year is Poisson $(Y)$ where $Y$ itself is a random variable. What is the probability that a random person has two accidents?

Discrete example:
$Y$ is Binomial (100, 0.3).

Continuous example:
$Y$ is exponential with parameter 1

## Law of Total Expectation

Law of Total Expectation (discrete. Let $X$ be a random variable and $Y$ be a discrete random variable that takes values $\{1,2, \ldots, n\}$. Then,

$$
E[X]=\sum_{i=1}^{n} E[X \mid Y=i] \operatorname{Pr}(Y=i)
$$

Law of Total Expectation (cont). Let $X$ be a random variable and let $Y$ be a continuous random variable. Then,

$$
E[X]=\int_{-\infty}^{+\infty} E[X \mid Y=y] f_{Y}(y) \mathrm{d} y
$$

Example:
$X$ is discrete uniform on $\{0, . .10\}$.
$Y$ is discrete uniform on $\{0, \ldots X\}$. What is $\mathrm{E}(Y)$ ?

Example:
$X$ is continuous uniform on $(0,10) . Y$ is continuous uniform on $(0, X)$. What is $\mathrm{E}(Y)$ ?

## Agenda

- Idea: Estimation
- Maximum Likelihood Estimation (example: mystery coin)
- Continuous random variables
- General Steps


## Probability vs statistics



## Probability vs statistics



## Probability: Viewpoint up to Now


$\theta=$ known parameter
$\theta$ tells us how samples are distributed.
$\mathbb{P}(x ; \theta)$ viewed as a function of $x($ fixed $\theta)$

## Statistics: Parameter Estimation - Workflow



## Statistics: Parameter Estimation - Workflow


$\mathcal{L}(x \mid \theta)$ viewed as a function of $\theta($ fixed x$)$

Example: $\mathcal{L}(x \mid \theta)=$ coin flip distribution with unknown $\theta=$ probability of heads

Observation: HTTHHHTHTHTTTTHTHTTTTTHT
Goal: Estimate $\theta$

## Example

Suppose we have a mystery coin with some probability $p$ of coming up heads. We flip the coin 8 times, independent of other flips and see the following sequence. of flips

## TTHTHTTH

Given this data, what would you estimate $p$ is?
Poll: https://pollev.com/ annakarlin185
a. $1 / 2$
b. $5 / 8$
c. $3 / 8$
d. $1 / 4$

## Agenda

- Idea: Estimation
- Maximum Likelihood Estimation (example: mystery coin)
- Continuous random variables
- General Steps


## Likelihood

Say we see outcome HHTHH.
You tell me your best guess about the value of the unknown parameter $\theta$ (aka $p$ ) is $4 / 5$. Is there some way that you can argue "objectively" that this is the best estimate?

## Likelihood

Say we see outcome HHTHH.
You tell me your best guess about the value of the unknown parameter $\theta$ (aka $p$ ) is $4 / 5$. Is there some way that you can argue "objectively" that this is the best estimate?
$\mathcal{L}($ HHTHH $\mid \theta)=\theta^{4}(1-\theta)$

Max Prob of seeing HHTHH


## Likelihood of Different Observations

(Discrete case)

Definition. The likelihood of independent observations $x_{1}, \ldots, x_{n}$ is

$$
\mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta\right)=\prod_{i=1}^{n} \mathbb{P}\left(x_{i} ; \theta\right)
$$

Maximum Likelihood Estimation (MLE). Given data $x_{1}, \ldots ., x_{n}$, find $\hat{\theta}$ ("the MLE") of model such that $L\left(x_{1}, \ldots, x_{n} \mid \hat{\theta}\right)$ is maximized!

$$
\hat{\theta}=\underset{\theta}{\operatorname{argmax}} \mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta\right)
$$

Usually: Solve $\frac{\partial L\left(x_{1}, \ldots, x_{n} \mid \theta\right)}{\partial \theta}=0$ or $\frac{\partial \ln L\left(x_{1}, \ldots, x_{n} \mid \theta\right)}{\partial \theta}=0$ [+check it's a max!]

## Likelihood vs. Probability

A probability function $\operatorname{Pr}(x ; \theta)$ is a function with input being an event $x$ for some fixed probability model ( $\mathrm{w} /$ param $\theta$ ).

$$
\sum_{x} \operatorname{Pr}(x ; \theta)=1
$$

A likelihood function $\mathcal{L}(x \mid \theta)$ is a function with input being $\theta$ (the param of the prob. Model) for some fixed dataset $x$.

These notions are very closely connected, but answer different questions. We are trying to find the $\theta$ that maximizes likelihood, thus we are looking for the maximum likelihood estimator.

## Example - Coin Flips

Observe: Coin-flip outcomes $x_{1}, \ldots, x_{n}$, with $n_{H}$ heads, $n_{T}$ tails

$$
- \text { I.e., } n_{H}+n_{T}=n \quad \text { Goal: estimate } \theta=\text { prob. heads. }
$$

$L\left(x_{1}, \ldots, x_{n} \mid \theta\right)=\theta^{n_{H}}(1-\theta)^{n_{T}}$
$\frac{\partial}{\partial \theta} L\left(x_{1}, \ldots, x_{n} \mid \theta\right)=? ? ?$

While it is not difficult to compute this derivative, we make our lives easier by observing that we are always taking a derivative of a product....

## Log-Likelihood

We can save some work if we work with the log-likelihood instead of the likelihood directly.

Definition. The log-likelihood of independent observations $x_{1}, \ldots, x_{n}$ is

$$
\begin{aligned}
& \mathcal{L} \mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta\right)=\ln \mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta\right) \\
& =\ln \prod_{i=1}^{n} \mathbb{P}\left(x_{i} ; \theta\right)=\sum_{i=1}^{n} \ln \mathbb{P}\left(x_{i} ; \theta\right)
\end{aligned}
$$

Useful log properties

$$
\begin{gathered}
\log (a b)=\log (a)+\log (b) \\
\log (a / b)=\log (a)-\log (b) \\
\log \left(a^{b}\right)=b \log (a)
\end{gathered}
$$

## Example - Coin Flips

Observe: Coin-flip outcomes $x_{1}, \ldots, x_{n}$, with $n_{H}$ heads, $n_{T}$ tails

$$
- \text { І.е., } n_{H}+n_{T}=n
$$

Goal: estimate $\theta=$ prob. heads.
$\mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta\right)=\theta^{n_{H}}(1-\theta)^{n_{T}}$
$\ln \mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta\right)=$

## Example - Coin Flips

Observe: Coin-flip outcomes $x_{1}, \ldots, x_{n}$, with $n_{H}$ heads, $n_{T}$ tails

$$
- \text { І.е., } n_{H}+n_{T}=n
$$

Goal: estimate $\theta=$ prob. heads.
$\mathcal{L}\left(x_{1}, \ldots ., x_{n} \mid \theta\right)=\theta^{n_{H}}(1-\theta)^{n_{T}}$
$\ln \mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta\right)=n_{H} \ln \theta+n_{T} \ln (1-\theta)$
$\frac{\partial}{\partial \theta} \ln \mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta\right)=n_{H} \cdot \frac{1}{\theta}-n_{T} \cdot \frac{1}{1-\theta}$

$$
\hat{\theta}=\frac{n_{H}}{n}
$$

Solve $n_{H} \cdot \frac{1}{\hat{\theta}}-n_{T} \cdot \frac{1}{1-\overparen{\theta}}=0$

## Brain Break



## Agenda

- Idea: Estimation
- Maximum Likelihood Estimation (example: mystery coin)
- Continuous random variables
- General Steps


## The Continuous Case

Given $n$ samples $x_{1}, \ldots, x_{n}$ from a Gaussian $\mathcal{N}\left(\mu, \sigma^{2}\right)$, estimate $\theta=\left(\mu, \sigma^{2}\right)$

Definition. The likelihood of independent observations $x_{1}, \ldots, x_{n}$ is

$$
\begin{array}{r}
\mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta\right)=\prod_{i=1}^{n} f\left(x_{i} ; \theta\right) \\
\text { Density function! (Why?) }
\end{array}
$$

## Why density?

- Density $\neq$ probability, but:
- For maximizing likelihood, we really only care about relative likelihoods, and density captures that
- has desired property that likelihood increases with better fit to the model
$n$ samples $x_{1}, \ldots, x_{n} \in \mathbb{R}$ from Gaussian $\mathcal{N}(\mu, 1)$. Most likely $\mu$ ? [i.e., we are given the promise that the variance is one]

$n$ samples $x_{1}, \ldots, x_{n} \in \mathbb{R}$ from Gaussian $\mathcal{N}(\mu, 1)$. Most likely $\mu$ ?

$n$ samples $x_{1}, \ldots, x_{n} \in \mathbb{R}$ from Gaussian $\mathcal{N}(\mu, 1)$. Most likely $\mu$ ?



## Example - Gaussian Parameters

Normal outcomes $x_{1}, \ldots, x_{n}$, known variance $\sigma^{2}=1$
Goal: estimate $\theta$ expectation
$\mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta\right)=\prod_{i=1}^{n} \frac{1}{\sqrt{2 \pi}} e^{\frac{\left(x_{i}-\theta\right)^{2}}{2}}=$

$$
\begin{gathered}
\log (a b)=\log (a)+\log (b) \\
\log (a / b)=\log (a)-\log (b) \\
\log \left(a^{b}\right)=b \log (a)
\end{gathered}
$$

## Example - Gaussian Parameters

Normal outcomes $x_{1}, \ldots, x_{n}$, known variance $\sigma^{2}=1$
Goal: estimate $\theta$ expectation
$\mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta\right)=\prod_{i=1}^{n} \frac{1}{\sqrt{2 \pi}} e^{\frac{\left(x_{i}-\theta\right)^{2}}{2}}=\left(\frac{1}{\sqrt{2 \pi}}\right)^{n} \prod_{i=1}^{n} e^{\frac{\left(x_{i}-\theta\right)^{2}}{2}}$
$\ln \mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta\right)=-n \frac{\ln 2 \pi}{2}-\sum_{i=1}^{n} \frac{\left(x_{i}-\theta\right)^{2}}{2}$

## Example - Gaussian Parameters

## Goal: estimate $\theta=$ expectation

Normal outcomes $x_{1}, \ldots, x_{n}$, known variance $\sigma^{2}=1$

$$
\ln \mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta\right)=-n \frac{\ln 2 \pi}{2}-\sum_{i=1}^{n} \frac{\left(x_{i}-\theta\right)^{2}}{2}
$$

## Example - Gaussian Parameters

Goal: estimate $\theta=$ expectation
Normal outcomes $x_{1}, \ldots, x_{n}$, known variance $\sigma^{2}=1$

$$
\ln \mathcal{L}\left(x_{1}, \ldots ., x_{n} \mid \theta\right)=-n \frac{\ln 2 \pi}{2}-\sum_{i=1}^{n} \frac{\left(x_{i}-\theta\right)^{2}}{2}
$$

Note: $\frac{\partial}{\partial \theta} \frac{\left(x_{i}-\theta\right)^{2}}{2}=\frac{1}{2} \cdot 2 \cdot\left(x_{i}-\theta\right) \cdot(-1)=\theta-x_{i}$

$$
\frac{\partial}{\partial \theta} \ln \mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta\right)=\sum_{i=1}^{n}\left(x_{i}-\theta\right)=\sum_{i=1}^{n} x_{i}-n \theta=0
$$

$$
\hat{\theta}=\frac{\sum_{i}^{n} x_{i}}{n} \quad \begin{aligned}
& \text { In other words, MLE is the } \\
& \text { sample mean of the data }
\end{aligned}
$$

Next: $n$ samples $x_{1}, \ldots, x_{n} \in \mathbb{R}$ from Gaussian $\mathcal{N}\left(\mu, \sigma^{2}\right)$. Most likely $\mu$ and $\sigma^{2}$ ?


## Agenda

- Idea: Estimation
- Maximum Likelihood Estimation (example: mystery coin)
- Continuous random variables
- General Steps


## General Recipe

1. Input Given $n$ iid samples $x_{1}, \ldots, x_{n}$ from parametric model with parameters $\theta$.
2. Likelihood Define your likelihood $\mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta\right)$.

- For discrete $\quad \mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta\right)=\prod_{i=1}^{n} \operatorname{Pr}\left(x_{i} ; \theta\right)$
- For continuous $\mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta\right)=\prod_{i=1}^{n} f\left(x_{i} ; \theta\right)$

3. Log Compute $\ln \mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta\right)$
4. Differentiate Compute $\frac{\partial}{\partial \theta} \ln \mathcal{L}\left(x_{1}, \ldots, x_{n} \mid \theta\right)$
5. Solve for $\hat{\theta}$ by setting derivative to 0 and solving for max.

Generally, you need to do a second derivative test to verify it is a maximum, but we won't ask you to do that in CSE 312.

## Another example of continuous law of total probability

$X$ and $Y$ are independent, where $X$ has CDF $_{\mathrm{F}}(x)$ and $Y$ has pdf $\mathrm{f}_{\mathrm{Y}}(y)$. What is $\mathrm{P}(X>5 Y)$ ?

Law of Total Probability (cont). Let $E$ be an event and let $Y$ be a continuous random variable. Then,

$$
\operatorname{Pr}[E]=\int_{-\infty}^{+\infty} \operatorname{Pr}[E \mid Y=y] f_{Y}(y) \mathrm{d} y
$$

