CSE 312

Foundations of Computing II

Lecture 21: Cont. Joint Distributions, Law of Total

Expectation

W

Anna R. Karlin

Slide Credit: Based on Stefano Tessaro's slides for 312 19au incorporating ideas from Alex Tsun, Rachel Lin, Hunter Schafer \& myself ©)

Agenda

- Continuous joint distributions
- Conditional Expectation and Law of Total Expectation

	Discrete	Continuous
Joint PMF/PDF	$p_{X, Y}(x, y)=\mathbb{P}(X=x, Y=y)$	$f_{X, Y}(x, y) \neq \mathbb{P}(X=x, Y=y)$
Joint range/support		
$\Omega_{X, Y}$	$\left\{(x, y) \in \Omega_{X} \times \Omega_{Y}: p_{X, Y}(x, y)>0\right\}$	$\left\{(x, y) \in \Omega_{X} \times \Omega_{Y}: f_{X, Y}(x, y)>0\right\}$
Joint CDF	$F_{X, Y}(x, y)=\sum_{t \leq x, s \leq y} p_{X, Y}(t, s)$	$F_{X, Y}(x, y)=\int_{-\infty}^{x} \int_{-\infty}^{y} f_{X, Y}(t, s) d s d t$
Normalization	$\sum_{x, y} p_{X, Y}(x, y)=1$	$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X, Y}(x, y) d x d y=1$
Marginal PMF/PDF	$p_{X}(x)=\sum_{y} p_{X, Y}(x, y)$	$f_{X}(x)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) d y$
Expectation	$\mathbb{E}[g(X, Y)]=\sum_{x, y} g(x, y) p_{X, Y}(x, y)$	$\mathbb{E}[g(X, Y)]=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x, y) f_{X, Y}(x, y) d x d y$

- Suppose that the surface of a disk is a circle with area R centered at the origin and that there is a single point imperfection at a location with is uniformly distributed across the surface of the disk. Let X and Y be the x and y coordinates of the imperfection (random variables) and let Z be the distance of the imperfection from the origin.
- What is their joint density $f(x, y)$?

- Suppose that the surface of a disk is a circle with area R centered at the origin and that there is a single point imperfection at a location with is uniformly distributed across the surface of the disk. Let X and Y be the x and y coordinates of the imperfection (random variables) and let Z be the distance of the imperfection from the origin.
- What is the range of $X \& Y$ and the marginal density of X and of Y ?
- Suppose that the surface of a disk is a circle with area R centered at the origin and that there is a single point imperfection at a location with is uniformly distributed across the surface of the disk. Let X and Y be the x and y coordinates of the imperfection (random variables) and let Z be the distance of the imperfection from the origin.
- Are X and Y independent?

- Suppose that the surface of a disk is a circle with area R centered at the origin and that there is a single point imperfection at a location with is uniformly distributed across the surface of the disk. Let X and Y be the x and y coordinates of the imperfection (random variables) and let Z be the distance of the imperfection from the origin.
- What is $E(Z)$?

All of this generalizes to more than 2 random variables

	Discrete	Continuous
Joint PMF/PDF	$p_{X, Y}(x, y)=\mathbb{P}(X=x, Y=y)$	$f_{X, Y}(x, y) \neq \mathbb{P}(X=x, Y=y)$
Joint range/support	$\left\{(x, y) \in \Omega_{X} \times \Omega_{Y}: p_{X, Y}(x, y)>0\right\}$	$\left\{(x, y) \in \Omega_{X} \times \Omega_{Y}: f_{X, Y}(x, y)>0\right\}$
$\Omega_{X, Y}$	$F_{X, Y}(x, y)=\sum_{t \leq x, s \leq y} p_{X, Y}(t, s)$	$F_{X, Y}(x, y)=\int_{-\infty}^{x} \int_{-\infty}^{y} f_{X, Y}(t, s) d s d t$
Joint CDF	$\sum_{x, y} p_{X, Y}(x, y)=1$	$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X, Y}(x, y) d x d y=1$
Normalization	$p_{X}(x)=\sum_{y} p_{X, Y}(x, y)$	$f_{X}(x)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) d y$
Marginal PMF/PDF	$\mathbb{E}[g(X, Y)]=\sum_{x, y} g(x, y) p_{X, Y}(x, y)$	$\mathbb{E}[g(X, Y)]=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x, y) f_{X, Y}(x, y) d x d y$
Expectation		

Agenda

- Continuous joint distributions
- Conditional Expectation and Law of Total Expectation

Conditional Expectation

Definition. Let X be a discrete random variable then the conditional

 expectation of X given event A is$$
E[X \mid A]=\sum_{x \in \Omega(X)} x \operatorname{Pr}(X=x \mid A)
$$

- Linearity of expectation still applies here

$$
E[a X+b Y+c \mid A]=a E[X \mid A]+b E[Y \mid A]+c
$$

Conditional Expectation

Definition. Let X be a discrete random variable then the conditional expectation of X given event $Y=y$ is

$$
E[X \mid Y=y]=\sum_{x \in \Omega(X)} x \operatorname{Pr}(X=x \mid Y=y)
$$

- Linearity of expectation still applies here

$$
E[a X+b Y+c \mid Y=y]=a E[X \mid Y=y]+b E[Y \mid Y=y]+c
$$

Law of Total Expectation

Law of Total Expectation (event version). Let X be a random variable and let events A_{1}, \ldots, A_{n} partition the sample space. Then,

$$
E[X]=\sum_{i=1}^{n} E\left[X \mid A_{i}\right] \operatorname{Pr}\left(A_{i}\right)
$$

Proof of Law of Total Expectation

Follows from Law of Total Probability and manipulating sums

$$
\begin{array}{rlr}
E[X] & =\sum_{x \in \Omega(X)} x \operatorname{Pr}(X=x) \\
& =\sum_{x \in \Omega(X)} x \sum_{i=1}^{n} \operatorname{Pr}\left(X=x \mid A_{i}\right) \operatorname{Pr}\left(A_{i}\right) \tag{byLTP}\\
& \left.=\sum_{i=1}^{n} \operatorname{Pr}\left(A_{i}\right) \sum_{x \in \Omega(X)} x \operatorname{Pr}\left(X=x \mid A_{i}\right)\right] \quad \text { (byange order of sums) } \\
& =\sum_{i=1}^{n} \operatorname{Pr}\left(A_{i}\right) E\left[X \mid A_{i}\right] \quad \text { (def of cond. expect.) }
\end{array}
$$

Law of Total Expectation

Law of Total Expectation (random variable version). Let X be a random variable and Y be a discrete random variable. Then,

$$
E[X]=\sum_{y \in \Omega(Y)} E[X \mid Y=y] \operatorname{Pr}(Y=y)
$$

Example: Flipping Coins

Suppose wanted to analyze flipping a random number of coins. Suppose someone gave us $Y \sim \operatorname{Poi}(5)$ fair coins and we wanted to compute the expected number of heads X from flipping those coins.

Example: Computer Failures

Suppose your computer operates in a sequence of steps, and that at each step i your computer will fail with probability p (independently of other steps). Let X be the number of steps it takes your computer to fail. What is $E[X]$?

Elevator rides

The number of people who enter an elevator on the ground floor is a Poisson random variable with mean 10 . If there are N floors above the ground floor, and if each person is equally likely to get off at any one of the N floors, independently of where others get off, compute the expected number of stops the elevator will make before discharging all the passengers.

Reference Sheet (with continuous RVs)

	Discrete	Continuous
Joint PMF/PDF	$p_{X, Y}(x, y)=P(X=x, Y=y)$	$f_{X, Y}(x, y) \neq P(X=x, Y=y)$
Joint CDF	$F_{X, Y}(x, y)=\sum_{t \leq x} \sum_{S \leq y} p_{X, Y}(t, s)$	$F_{X, Y}(x, y)=\int_{-\infty}^{x} \int_{-\infty}^{y} f_{X, Y}(t, s) d s d t$
Normalization	$\sum_{x} \sum_{y} p_{X, Y}(x, y)=1$	$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X, Y}(x, y) d x d y=1$
Marginal PMF/PDF	$p_{X}(x)=\sum_{y} p_{X, Y}(x, y)$	$f_{X}(x)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) d y$
Expectation	$E[g(X, Y)]=\sum_{x} \sum_{y} g(x, y) p_{X, Y}(x, y)$	$E[g(X, Y)]=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x, y) f_{X, Y}(x, y) d x d y$
Conditional PMF/PDF	$p_{X \mid Y}(x \mid y)=\frac{p_{X, Y}(x, y)}{p_{Y}(y)}$	$f_{X \mid Y}(x \mid y)=\frac{f_{X, Y}(x, y)}{f_{Y}(y)}$
Conditional Expectation	$E[X \mid Y=y]=\sum_{x} x p_{X \mid Y}(x \mid y)$	$E[X \mid Y=y]=\int_{-\infty}^{\infty} x f_{X \mid Y}(x \mid y) d x$
Independence	$\forall x, y, p_{X, Y}(x, y)=p_{X}(x) p_{Y}(y)$	$\forall x, y, f_{X, Y}(x, y)=f_{X}(x) f_{Y}(y)$

