CSE 312

Foundations of Computing II

Lecture 21: Cont. Joint Distributions, Law of Total

 Expectation
Anna R. Karlin

Slide Credit: Based on Stefano Tessaro's slides for 312 19au incorporating ideas from Alex Tsun, Rachel Lin, Hunter Schafer \& myself ©

Agenda

- Continuous joint distributions
- Conditional Expectation and Law of Total Expectation

	Discrete	Continuous
Joint PMF/PDF	$p_{X, Y}(x, y)=\mathbb{P}(X=x, Y=y)$	$f_{X, Y}(x, y) \neq \mathbb{P}(X=x, Y=y)$
Joint range/support	$\left\{(x, y) \in \Omega_{X} \times \Omega_{Y}: p_{X, Y}(x, y)>0\right\}$	$\left\{(x, y) \in \Omega_{X} \times \Omega_{Y}: f_{X, Y}(x, y)>0\right\}$
$\Omega_{X, Y}$	$F_{X, Y}(x, y)=\sum_{t \leq x, s \leq y} p_{X, Y}(t, s)$	$F_{X, Y}(x, y)=\int_{-\infty}^{x} \int_{-\infty}^{y} f_{X, Y}(t, s) d s d t$
Joint CDF	$\sum_{x, y} p_{X, Y}(x, y)=1$	$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X, Y}(x, y) d x d y=1$
Normalization	$p_{X}(x)=\sum_{y} p_{X, Y}(x, y)$	$f_{X}(x)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) d y$
Marginal PMF/PDF	$\mathbb{E}[g(X, Y)]=\sum_{x, y} g(x, y) p_{X, Y}(x, y)$	$\mathbb{E}[g(X, Y)]=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x, y) f_{X, Y}(x, y) d x d y$
Expectation		

$$
\sum_{x \in \Omega_{x}} \sum_{y \in \Omega_{y}} p_{x y}(x, y)=1
$$

) $P(x=2)$ suing row

$$
\Omega_{x, y} \neq \Omega_{x} \times \Omega_{y}{ }^{3}
$$

x, y net indef
$F_{x y}(8,0,0)$

- Suppose that the surface of a disk is a circle with ara R centered at the origin and that there is a single point imperfection at a location with is uniformly distributed across the surface of the disk. Let X and Y be the x and y coordinates of the imperfection (random variables) and let Z be the distance of the imperfection from the origin.
- What is their joint density $f(x, y)$?

$$
f_{x y}(x, y)=\left\{\begin{array}{lc}
c & x^{2}+y^{2} \leq R^{2} \\
0 & 0 . w
\end{array}\right.
$$

$$
\begin{gathered}
\iint_{x^{2}+y^{2} \leq R^{2}} c d x d y=1 \\
c \pi R^{2}=1 \\
\Rightarrow c=\frac{1}{\pi R^{2}}
\end{gathered}
$$

- Suppose that the surface of a disk is a circle with area R centered at the origin and that there is a single point imperfection at a location with is uniformly distributed across the surface of the disk. Let X and Y be the x and y coordinates of the imperfection (random variables) and let Z be the distance of the imperfection from the origin.
- What is the range of $X \& Y$ and the marginal density of X and of Y ?

$$
\Omega_{x}=[-R, R], R_{l}=[-[, R]
$$

$$
\begin{aligned}
f_{x}(x) & =\int_{\sqrt{R^{2}-x^{2}}}^{\sqrt{R^{2}-x^{2}}} \frac{1}{\pi R^{2}} d y=\frac{2 \sqrt{R^{2}-x^{2}}}{\pi R^{2}}
\end{aligned}
$$

$$
f_{x}(x)=\left\{\frac{\partial \sqrt{R-x}}{\pi R^{2}} \quad x^{2} \leq R^{2}\right.
$$

- Suppose that the surface of a disk is a circle with area R centered at the origin and that there is a single point imperfection at a location with is uniformly distributed across the surface of the disk. Let X and Y be the x and y coordinates of the imperfection (random variables) and let Z be the distance of the imperfection from the origin.
- Are X and Y independent?

$$
\Omega_{x} * \Omega_{y}
$$

$$
\begin{aligned}
& f_{x}(x)>0 \\
& f_{x y}(x, y)=0 \quad \text { by } f_{x}(x), f_{y}(y)>0
\end{aligned}
$$

- Suppose that the surface of a disk is a circle with area R centered at the origin and that there is a single point imperfection at a location with is uniformly distributed across the surface of the disk. Let X and Y be the x and y coordinates of the imperfection (random variables) and let Z be the distance of the imperfection from the origin.
- What is $E(Z)$?

$$
\begin{aligned}
& Z=\sqrt{x^{2}+y^{2}} \\
& Z=g(x, y)
\end{aligned}
$$

All of this generalizes to more than 2 random variables

	Discrete	Continuous
Joint PMF/PDF	$p_{X, Y}(x, y)=\mathbb{P}(X=x, Y=y)$	$f_{X, Y}(x, y) \neq \mathbb{P}(X=x, Y=y)$
Joint range/support $\Omega_{X, Y}$	$\left\{(x, y) \in \Omega_{X} \times \Omega_{Y}: p_{X, Y}(x, y)>0\right\}$	$\left\{(x, y) \in \Omega_{X} \times \Omega_{Y}: f_{X, Y}(x, y)>0\right\}$
Joint CDF	$F_{X, Y}(x, y)=\sum_{t \leq x, s \leq y} p_{X, Y}(t, s)$	$F_{X, Y}(x, y)=\int_{-\infty}^{x} \int_{-\infty}^{y} f_{X, Y}(t, s) d s d t$
Normalization	$\sum_{x, y} p_{X, Y}(x, y)=1$	$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X, Y}(x, y) d x d y=1$
Marginal PMF/PDF	$p_{X}(x)=\sum_{y} p_{X, Y}(x, y)$	$f_{X}(x)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) d y$
Expectation	$\mathbb{E}[g(X, Y)]=\sum_{x, y} g(x, y) p_{X, Y}(x, y)$	$\mathbb{E}[g(X, Y)]=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x, y) f_{X, Y}(x, y) d x d y$
$\int_{-\infty}^{f_{x, y}(x, y)}=\int_{-\infty}^{f_{x, 2}\left(x, y, y^{2}\right)} d x d y d z=2$		

Agenda

- Continuous joint distributions
- Conditional Expectation and Law of Total Expectation

Conditional Expectation

Definition. Let X be a discrete random variable then the conditional expectation of X given event A is

$$
E[X \mid A]=\sum_{x \in \Omega(X)} x \operatorname{Pr}(X=x \mid A)
$$

- Linearity of expectation still applies here

$$
E[a X+b Y+c \mid A]=a E[X \mid A]+b E[Y \mid A]+c
$$

Conditional Expectation
$A=Y=y$
Definition. Let X be a discrete random variable then the conditional expectation of X given event $Y=y$ is

$$
\underline{E[X \mid Y=y]}=\sum_{x \in \Omega(X)} x \underbrace{\operatorname{Pr}(X=x \mid Y=y)}
$$

$$
\sum_{x} \frac{P\left(x=x y y_{y}\right)}{\int_{\text {main }}}=1
$$

conditivereal pere nassifin.

$$
g \times \mid y=y
$$

- Linearity of expectation still applies here

$$
E[a X+b Y+c \mid Y=y]=a E[X \mid Y=y]+b E[Y \mid Y=y]+c
$$

Law of Total Expectation

Law of Total Expectation (event version). Let X be a random variable and let event $s A_{1}, \ldots, A_{n}$ partition the sample space. Then,

$$
E[X]=\sum_{i=1}^{n} E\left[X \mid A_{i}\right] \operatorname{Pr}\left(A_{i}\right)
$$

Proof of Law of Total Expectation

Follows from Law of Total Probability and manipulating sums

$$
\begin{align*}
& E[X]=\sum_{x \in \Omega(X)} x \operatorname{Pr}(X=x) \\
& =\sum_{x \in \Omega(X)} x \sum_{i=1}^{n} \operatorname{Pr}\left(X=x \mid A_{i}\right) \operatorname{Pr}\left(A_{i}\right) \tag{byLTP}\\
& =\sum_{i=1}^{n} \operatorname{Pr}\left(A_{i}\right)\left(\sum_{x \in \Omega(X)} x \operatorname{Pr}\left(X=x \mid A_{i}\right)\right] \\
& =\sum_{i=1}^{n} \operatorname{Pr}\left(A_{i}\right) E\left[X \mid A_{i}\right] \\
& \text { (change order of sums) } \\
& \text { (def of cond. expect.) }
\end{align*}
$$

Law of Total Expectation (random variable version). Let X be a random variable and Y be a discrete random variable. Then,

$$
E[X]=\sum_{y \in \Omega(Y)} E[X \mid Y=y] \operatorname{Pr}(Y=y)
$$

$E[E(X \mid y)]$

$$
y \in \Omega_{y}
$$

random variable takes

$$
E(x \mid y=y) \quad \omega p . p r(y=y)
$$

$$
\begin{array}{ll}
\Omega_{y}=\{1,2,3\} \\
E(x \mid y)= \begin{cases}E(x \mid y=1) & \operatorname{Pr}(y=1) \\
E(x \mid y=2) & \text { P(y=2) } \\
E(x \mid y=3) & P(y=3\end{cases}
\end{array}
$$

Example: Flipping Coins

Suppose wanted to analyze flipping a random number of coins. Suppose someone gave us $Y \sim \operatorname{Poi}(5)$ fair coins and we wanted to compute the expected number of heads X from flipping those coins.

Example: Computer Failures

Suppose your computer operates in a sequence of steps, and that at each step i your computer will fail with probability p (independently of other steps). Let X be the number of steps it takes your computer to fail. What is $E[X]$?

$$
\begin{aligned}
& y= \begin{cases}1 & \text { y fist trial failure } \\
0 & 0.0 .\end{cases}
\end{aligned}
$$

$$
\begin{aligned}
E(x) & =p+(1-p)(1+E(x)) \\
& =\frac{p+1-p}{1}+(1-p) E(x)
\end{aligned}
$$

Elevator rides
The number of people who enter an elevator on the ground floor is a Poisson random variable with mean 10 . If there are N floors above the ground floor, and if each person is equally likely to get off at any one of the N floors, independently of where others get off, compute the expected number of stops the elevator will make before discharging all the passengers.
$Y:$ \#stops elevator makes.

$$
E(Y)=\sum_{k=0}^{\infty} E(y \mid x=k) \underbrace{P(x=k)}_{e^{-10} \frac{10}{k!}}
$$

$$
y=y_{1}+y_{2}+\ldots+y_{n}
$$

9 9
x : \#people entry

$$
x^{\sim} \text { poisson }(10)=20
$$

$Y_{i}= \begin{cases}1 & \text { sips onion flap } \\ 0 & 0 . w .\end{cases}$

$$
\begin{aligned}
E(y \mid x=k) & =E\left(y_{1}+y_{2}+\cdots+y_{N} \mid x=k\right) \\
& =\sum_{\substack{\text { Loe } \\
\text { frobepop }}}^{N} \underbrace{E(\text { stenonimfore } \mid x=k)}_{P\left(y_{i} \mid x=k\right)}
\end{aligned}
$$

Zi \#y peaplewho steponim froar $\mid X=k$

$$
\operatorname{Pr}\left(z_{i}>0\right)=1-\underbrace{\operatorname{Pr}\left(z_{i}=0\right)}_{\left(\frac{N-1}{N}\right)^{k}}
$$

Reference Sheet (with continuous RVs)

	Discrete	Continuous
Joint PMF/PDF	$p_{X, Y}(x, y)=P(X=x, Y=y)$	$f_{X, Y}(x, y) \neq P(X=x, Y=y)$
Joint CDF	$F_{X, Y}(x, y)=\sum_{t \leq x} \sum_{s \leq y} p_{X, Y}(t, s)$	$F_{X, Y}(x, y)=\int_{-\infty}^{x} \int_{-\infty}^{y} f_{X, Y}(t, s) d s d t$
Normalization	$\sum_{x} \sum_{y} p_{X, Y}(x, y)=1$	$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X, Y}(x, y) d x d y=1$
Marginal PMF/PDF	$p_{X}(x)=\sum_{y} p_{X, Y}(x, y)$	$f_{X}(x)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) d y$
Expectation	$E[g(X, Y)]=\sum_{x} \sum_{y} g(x, y) p_{X, Y}(x, y)$	$E[g(X, Y)]=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x, y) f_{X, Y}(x, y) d x d y$
Conditional PMF/PDF	$p_{X \mid Y}(x \mid y)=\frac{p_{X, Y}(x, y)}{p_{Y}(y)}$	$f_{X \mid Y}(x \mid y)=\frac{f_{X, Y}(x, y)}{f_{Y}(y)}$
Conditional Expectation	$E[X \mid Y=y]=\sum_{x} x p_{X \mid Y}(x \mid y)$	$E[X \mid Y=y]=\int_{-\infty}^{\infty} x f_{X \mid Y}(x \mid y) d x$
Independence	$\forall x, y, p_{X, Y}(x, y)=p_{X}(x) p_{Y}(y)$	$\forall x, y, f_{X, Y}(x, y)=f_{X}(x) f_{Y}(y)$

