
CSE 312
Foundations of Computing II
Lecture 21:  Cont. Joint Distributions, Law of Total 
Expectation
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Slide Credit: Based on Stefano Tessaro’s slides for 312 19au 
incorporating ideas from Alex Tsun, Rachel Lin, Hunter Schafer & myself J

Anna R. Karlin

 



Agenda

• Continuous joint distributions
• Conditional Expectation and Law of Total Expectation
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• Suppose that the surface of a disk is a circle with area R centered at 
the origin and that there is a single point imperfection at a location 
with is uniformly distributed across the surface of the disk. Let X and 
Y be the x and y coordinates of the imperfection (random variables) 
and let Z be the distance of the imperfection from the origin. 
– What is their joint density f(x,y)?
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• Suppose that the surface of a disk is a circle with area R centered at the origin 
and that there is a single point imperfection at a location with is uniformly 
distributed across the surface of the disk. Let X and Y be the x and y coordinates 
of the imperfection (random variables) and let Z be the distance of the 
imperfection from the origin.
– What is the range of X & Y and the marginal density of X and of Y?
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• Suppose that the surface of a disk is a circle with area R centered at the origin 
and that there is a single point imperfection at a location with is uniformly 
distributed across the surface of the disk. Let X and Y be the x and y coordinates 
of the imperfection (random variables) and let Z be the distance of the 
imperfection from the origin.
– Are X and Y independent?
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• Suppose that the surface of a disk is a circle with area R centered at the origin 
and that there is a single point imperfection at a location with is uniformly 
distributed across the surface of the disk. Let X and Y be the x and y coordinates 
of the imperfection (random variables) and let Z be the distance of the 
imperfection from the origin.
– What is E(Z)?
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All of this generalizes to more than 2 random variables
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Agenda

• Continuous joint distributions
• Conditional Expectation and Law of Total Expectation
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Conditional Expectation
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Definition. Let ! be a discrete random variable then the conditional 
expectation of ! given event " is

# ! "] = &
! ∈ #(%)

' Pr ! = ' ")

• Linearity of expectation still applies here
! "# + %& + ' (] = "! # (] + %! & (] + '



Conditional Expectation
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Definition. Let ! be a discrete random variable then the conditional 
expectation of ! given event + = , is

# ! + = ,] = &
! ∈ #(%)

' Pr ! = ' + = ,)

• Linearity of expectation still applies here
! "# + %& + ' & = +] = "! # & = +] + %! & & = +] + '
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Law of Total Expectation
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Law of Total Expectation (event version). Let ! be a random variable 
and let events "', … , "( partition the sample space. Then,

#[!] = &
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Proof of Law of Total Expectation

Follows from Law of Total Probability and manipulating sums

! " = $
! ∈#(%)

% Pr(" = %)

= $
! ∈#(%)

%$
'()

*
Pr " = % *')Pr(*')

=$
'()

*
Pr *' $!∈# %

% Pr " = % *')]

=$
'()

*
Pr *' ! " *']

15

(by LTP)

(change order of sums)

(def of cond. expect.)52



Law of Total Expectation
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Law of Total Expectation (random variable version). Let ! be a 
random variable and + be a discrete random variable. Then,

#[!] = &
+ ∈#(,)

# ! + = , Pr(+ = ,)
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Example: Flipping Coins

Suppose wanted to analyze flipping a random number of coins. Suppose someone 
gave us & ∼ -./(5) fair coins and we wanted to compute the expected number of 
heads # from flipping those coins.
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Example: Computer Failures

Suppose your computer operates in a sequence of steps, and that at each step /
your computer will fail with probability 3 (independently of other steps). Let # be 
the number of steps it takes your computer to fail. What is ![#]?
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Elevator rides

The number of people who enter an elevator on the ground floor is a 
Poisson random variable with mean 10. If there are N floors above the 
ground floor, and if each person is equally likely to get off at any one of 
the N floors, independently of where others get off, compute the 
expected number of stops the elevator will make before discharging all 
the passengers.
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Reference Sheet (with continuous RVs)
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