CSE 312
 Foundations of Computing II

Lecture 20: Joint Distributions

WPAUL G. ALLEN SCHOOL OF COMPUTER SCIENCE \& ENGINEERING

Anna R. Karlin

Slide Credit: Based on Stefano Tessaro's slides for 312 19au incorporating ideas from Alex Tsun, Rachel Lin, Hunter Schafer \& myself ©

$$
n: U \rightarrow\{0,1, \ldots, m-1\}
$$

Hash functions - few more comments
Approach: define a family $) \&$ hash us sit.
(a) if we pick hash $\left.f_{n} h \in\right)($ var., to will behave well

$$
\begin{aligned}
& \forall x \in U \quad \forall i \in\left\{0, \ldots, m^{-1}\right\} \quad \operatorname{Pr}_{h \in x}(h(x)=i)=\frac{1}{m} \\
& \begin{array}{l}
x, y \in U \quad \forall i, j \in\left\{0,1, m^{-1}\right\} \quad \operatorname{Pr}_{h \in x}(h(x)=i, h(y)=j)=\frac{1}{m^{2}}
\end{array},=\frac{m^{2}}{x \neq y} \quad
\end{aligned}
$$

b) $\forall x \in U, \forall h \in)\left(\begin{array}{l}h(x) \text { is efficiently computable } \\ O(1) \text { time }\end{array}\right.$

A class g hash frs that satisfies this $|U|=N \quad N \leq \rho$ prime \#
$h_{a, p}(x)=\frac{(a x+b)}{1}$ mod p nod m

$$
H=\left\{h_{a b} \mid 1 \leq a \leq p-1, \quad 0 \leq b \leq p^{-1}\right\}
$$

One of many contractions.

Agenda

- Joint Distributions
- Cartesian Products
- Joint PMFs/PDFs/CDFs and Joint Range
- Marginal Distributions, etc.

Why joint distributions?

- Given all of its user's ratings for different movies, and any preferences you have expressed, Netflix wants to recommend a new movie for you.
- Given a bunch of medical data correlating symptoms and personal history with diseases, predict what is ailing a person with a particular medical history and set of symptoms. $\operatorname{Pr}\left(\left.\begin{array}{l}D \\ \hline\end{array} \right\rvert\,\right.$ Feven $\left.100, B B=\cdots\right)$
- Given current traffic, pedestrian locations, weather, lights, etc. decide whether a self-driving car should slow down or come to a stop.

Review Cartesian Product

Definition. Let \underline{A} and \underline{B} be sets. The Cartesian product of A and B is denoted

$$
\underline{A \times B}=\{(a, b): a \in \underset{\sim}{A}, \underline{b} \in \underline{B}\}
$$

Example.

$$
\frac{\{1,2,3\}}{A} \times \frac{\{4,5\}}{B}=\{(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)\}
$$

If A and B are finite sets, then $|A \times B|=|A| \cdot|B|$.
The sets don't need to be finite! You can have $\mathbb{R} \times \mathbb{R}$ (often denoted \mathbb{R}^{2})

Joint PMFs and Joint Range

Definition. Let X and Y be discrete random variables. The Joint PMF of X and Y is

$$
p_{X, Y}(a, b)=\operatorname{Pr}(X=a, Y=b)
$$

Definition. The joint range of $p_{X, Y}$ is

$$
\Omega(X, Y)=\left\{(c, d): p_{X, Y}(c, d)>0\right\} \subseteq \frac{\Omega(X) \times \Omega(Y)}{\int_{X}}
$$

Note that

$$
\sum_{(s, t) \in \Omega(X, Y)} p_{X, Y}(s, t)=1
$$

Example: Weird Dice

Suppose I roll two fair 4-sided die independently. Let X be the value of the first die, and Y be the value of the second die.
$\Omega(X)=\{1,2,3,4\}$ and $\Omega(Y)=\{1,2,3,4\}$

In this problem, the joint PMF is
$p_{X, Y}(x, y)= \begin{cases}\frac{1 / 16}{0}, & x, y \in \Omega(X, Y) \\ \text { otherwise }\end{cases}$

$\mathrm{x} \mid \mathrm{y}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	4
$\mathbf{1}$	$1 / 16$	$1 / 16$	$1 / 16$	$1 / 16$
	$1 / 16$	$1 / 16$	$1 / 16$	$1 / 16$
3	$1 / 16$	$1 / 16$	$1 / 16$	$1 / 16$
$\mathbf{4}$	$1 / 16$	$1 / 16$	$1 / 16$	$1 / 16$

and the joint range is (since all combinations have non-zero probability)
$\Omega(X, Y)=\Omega(X) \times \Omega(Y)$

Independence

Definition. Let X and Y be discrete random variables. The Joint PMF of X and Y is

$$
p_{X, Y}(a, b)=\operatorname{Pr}(X=a, Y=b)
$$

Definition. The joint range of $p_{X, Y}$ is

$$
\Omega(X, Y)=\left\{(c, d): p_{X, Y}(c, d)>0\right\} \subseteq \Omega(X) \times \Omega(Y)
$$

Definition. X and Y are independent iff for all a, b
$\operatorname{Pr}(X=a, Y=b)=\operatorname{Pr}(X=a) \cdot \operatorname{Pr}(Y=b)$

Example: Weirder Dice

Suppose I roll two fair 4-sided die independently. Let X be the value of the first die, and Y be the value of the second die. Let $U=\min (X, Y)$ and $W=\max (X, Y)$ $\Omega(U)=\{1,2,3,4\}$ and $\Omega(W)=\{1,2,3,4\}$

$\Omega(U, W)=\{(u, w) \in \Omega(U) \times \Omega(W): u \leq w\} \neq \Omega(U) \times \Omega(W)$
Poll:
What is $p_{U, W}(1,3)=\operatorname{Pr}(U=1, W=3) ?$
a. $1 / 16$

b. $2 / 16$	
c. $1 / 2$	
d.	Not sure

https://pollev.com/ annakarlin185

$$
\operatorname{Pr}(x=1, y=3)+\operatorname{Pr}(x=3, y=1
$$

Example: Weirder Dice

Suppose I roll two fair 4 -sided die independently. Let X be the value of the first die, and Y be the value of the second die. Let $U=\min (X, Y)$ and $W=\max (X, Y)$
$\Omega(U)=\{1,2,3,4\}$ and $\Omega(W)=\{1,2,3,4\}$
$\Omega(U, W)=\{(u, w) \in \Omega(U) \times \Omega(W): u \leq w\} \neq \Omega(U) \times \Omega(W)$

The joint PMF $p_{U, W}(u, w)=\operatorname{Pr}(U=u, W=w)$ is
$p_{U, W}(u, w)=\left\{\begin{aligned} 2 / 16, & (u, w) \in \Omega(U) \times \Omega(W) \\ 1 / 16, & (u, w) \in \Omega(U) \times \Omega(W) \\ 0, & \text { where } w>u \\ 0, & \text { otherwise }\end{aligned}\right.$

Ulw	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
$\mathbf{1}$	$1 / 16$	$2 / 16$	$2 / 16$	$2 / 16$
$\mathbf{2}$	0	$1 / 16$	$2 / 16$	$2 / 16$
$\mathbf{3}$	0	0	$1 / 16$	$2 / 16$
$\mathbf{4}$	0	0	0	$1 / 16$

Example: Weirder Dice

Suppose I roll two fair 4 -sided die independently. Let X be the value of the first die, and Y be the value of the second die. Let $U=\min (X, Y)$ and $W=\max (X, Y)$

Suppose we didn't know how to compute $\operatorname{Pr}(U=u)$ directly. Can we figure it out if we know $p_{U, W}(u, w)$?
$p_{U}(u)=\left\{\begin{array}{l}u=1 \\ u=2 \\ u=3 \\ u=4\end{array}\right.$

U\|w	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
$\mathbf{1}$	$1 / 16$	$2 / 16$	$2 / 16$	$2 / 16$
$\mathbf{2}$	0	$1 / 16$	$2 / 16$	$2 / 16$
$\mathbf{3}$	0	0	$1 / 16$	$2 / 16$
$\mathbf{4}$	0	0	0	$1 / 16$

Example: Weirder Dice

Suppose I roll two fair 4 -sided die independently. Let X be the value of the first die, and Y be the value of the second die. Let $U=\min (X, Y)$ and $W=\max (X, Y)$

Suppose we didn't know how to compute $\operatorname{Pr}(U=u)$ directly. Can we figure it out if we know $p_{U, W}(u, w)$?
$p_{U}(u)= \begin{cases}7 / 16, & u=1 \\ 5 / 16, & u=2 \\ 3 / 16, & u=3 \\ 1 / 16, & u=4\end{cases}$

UIW	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
$\mathbf{1}$	$1 / 16$	$2 / 16$	$2 / 16$	$2 / 16$
$\mathbf{2}$	0	$1 / 16$	$2 / 16$	$2 / 16$
$\mathbf{3}$	0	0	$1 / 16$	$2 / 16$
$\mathbf{4}$	0	0	0	$1 / 16$

Marginal PMF

Definition. Let X and Y be discrete random variables and $p_{X, Y}(a, b)$ their joint PMF. The marginal PMF of X

$$
\underset{\sim}{p_{X}(a)}=\sum_{b \in \Omega(Y)} p_{X, Y}(a, b)
$$

Similarly, $p_{Y}(b)=\sum_{a \in \Omega(X)} p_{X, Y}(a, b)$

Visual (for continuous X and Y)

Joint Expectation

Definition. Let X and Y be discrete random variables and $p_{X, Y}(a, b)$ their joint PMF. The expectation of some function $g(x, y)$ with inputs X and Y

$$
E[g(X, Y)]=\sum_{a \in \Omega(X)} \sum_{b \in \Omega(Y)} g(a, b) p_{X, Y}(a, b)
$$

Another example.

Suppose the table below gives us the joint pmf of X and Y .

What is the marginal pmf of X ? What is the marginal pmf of Y ? Are X and Y independent? What is $\mathrm{E}(\mathrm{XY})$?
it trial e $\rightarrow p$ ir (i Us requests)

- Suppose the number of requests Z to a particular web server per hour is Poisson(λ). And that the request comes from within the US with probability p.
- Let X be the number of requests per hour from the US and let Y be the number of requests per hour from outside the US. What is the joint mf of X and Y ? Are they independent?

$f_{X}(x) d x \approx \operatorname{Pr}\left(X\right.$ is within $\left.d x y_{x}\right)$
$f_{X, Y}(x, y) d x d y$ of $\operatorname{Pr} \int(X$ is witun $d x d x, y$ us withen $d y d y)$ $\int_{-\infty}^{\infty} f_{x}(x) d x=1$

Independence (continuous random variables)

Definition. Let X and Y be continuous random variables. The joint pdf of X and Y is

$$
f_{X, Y}(a, b) \neq \operatorname{Pr}(X=a, Y=b)
$$

Definition. The joint range of $p_{X, Y}$ is

$$
\Omega(X, Y)=\left\{(c, d): p_{X, Y}(c, d)>0\right\} \subseteq \Omega(X) \times \Omega(Y)
$$

Definition. X and Y are independent iff for all a, b
$f_{X, Y}(a, b)=f_{X}(a) \cdot f_{Y}(b)$

- Suppose that the surface of a disk is a circle with area R centered at the origin and that there is a single point imperfection at a location with is uniformly distributed across the surface of the disk. Let X and Y be the x and y coordinates of the imperfection (random variables) and let Z be the distance of the imperfection from the origin.
- What is their joint density $f(x, y)$?

- Suppose that the surface of a disk is a circle with area R centered at the origin and that there is a single point imperfection at a location with is uniformly distributed across the surface of the disk. Let X and Y be the x and y coordinates of the imperfection (random variables) and let Z be the distance of the imperfection from the origin.
- What is the range of $X \& Y$ and the marginal density of X and of Y ?

Poll:

What is Ω_{X} ?
a. $\left[-\sqrt{R^{2}-x^{2}}, \sqrt{R^{2}-x^{2}}\right]$
b. $[-R, R]$
c. $\left[-\sqrt{R^{2}-y^{2}}, \sqrt{R^{2}-y^{2}}\right]$
d. Not sure
https://pollev.com/ annakarlin185

- Suppose that the surface of a disk is a circle with area R centered at the origin and that there is a single point imperfection at a location with is uniformly distributed across the surface of the disk. Let X and Y be the x and y coordinates of the imperfection (random variables) and let Z be the distance of the imperfection from the origin.
- Are X and Y independent?


```
Poll:
Are X and Y independent?
a. yes
b. no
```

https://pollev.com/ annakarlin185

- Suppose that the surface of a disk is a circle with area R centered at the origin and that there is a single point imperfection at a location with is uniformly distributed across the surface of the disk. Let X and Y be the x and y coordinates of the imperfection (random variables) and let Z be the distance of the imperfection from the origin.
- What is $E(Z)$?

All of this generalizes to more than 2 random variables

	Discrete	Continuous
Joint PMF/PDF	$p_{X, Y}(x, y)=\mathbb{P}(X=x, Y=y)$	$f_{X, Y}(x, y) \neq \mathbb{P}(X=x, Y=y)$
Joint range/support	$\left\{(x, y) \in \Omega_{X} \times \Omega_{Y}: p_{X, Y}(x, y)>0\right\}$	$\left\{(x, y) \in \Omega_{X} \times \Omega_{Y}: f_{X, Y}(x, y)>0\right\}$
$\Omega_{X, Y}$	$F_{X, Y}(x, y)=\sum_{t \leq x, s \leq y} p_{X, Y}(t, s)$	$F_{X, Y}(x, y)=\int_{-\infty}^{x} \int_{-\infty}^{y} f_{X, Y}(t, s) d s d t$
Joint CDF	$\sum_{x, y} p_{X, Y}(x, y)=1$	$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X, Y}(x, y) d x d y=1$
Normalization	$p_{X}(x)=\sum_{y} p_{X, Y}(x, y)$	$f_{X}(x)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) d y$
Marginal PMF/PDF	$\mathbb{E}[g(X, Y)]=\sum_{x, y} g(x, y) p_{X, Y}(x, y)$	$\mathbb{E}[g(X, Y)]=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x, y) f_{X, Y}(x, y) d x d y$
Expectation		

Brain Break

