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Data mining – Stream Model

● In many data mining situations, the data is not known ahead of time.
Examples:   Google queries,  Twitter or Facebook status updates

Youtube video views
● In some ways, best to think of the data as an infinite stream that is 

non-stationary (distribution changes over time)

● Input elements (e.g. Google queries) enter/arrive one at a time.
We cannot possibly store the stream.

Question: How do we make critical calculations about the data stream 
using a limited amount of memory?



Problem Setup

● Input: sequence of ! elements "!, "", … , "# from a known 
universe % (e.g., 8-byte integers).

● Goal: perform a computation on the input, in a single left to 
right pass where

○ Elements processed in real time

○ Can’t store the full data. => use minimal amount of storage while 
maintaining working “summary”



What can we compute?

● Some functions are easy:

○ Min

○ Max 

○ Sum

○ Average
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Today: Counting distinct elements
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Application: 

You are the content manager at YouTube, and you 
are trying to figure out the distinct view count for a 
video. How do we do that?

Note: A person can view their favorite videos 
several times, but they only count as 1 distinct view!



Other applications

● IP packet streams: How many distinct IP addresses or IP flows 
(source+destination IP, port, protocol)

* Anomaly detection, traffic monitoring
● Search: How many distinct search queries on Google on a certain topic 

yesterday
● Web services: how many distinct users (cookies) searched/browsed a 

certain term/item
* Advertising, marketing trends, etc.



Counting distinct elements

Want to compute number of distinct IDs in the stream.
How?
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N = # of IDs in the stream = 11,    m = # of distinct IDs in the stream = 5  
or

Set



Counting distinct elements

Want to compute number of distinct IDs in the stream.
● Naïve solution: As the data stream comes in, store all distinct 

IDs in a hash table. 
● Space requirement O(m) , where m is the number of distinct IDs

● Consider the number of users of youtube, and the number of 
videos on youtube. This is not feasible. 

32,   12, 14,   32, 7,   12, 32, 7,    32, 12, 4
N = # of IDs in the stream = 11,    m = # of distinct IDs in the stream = 5  



Counting distinct elements

Want to compute number of distinct IDs in the stream.
● How to do this without storing all the elements?

Yet another super cool application of probability
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We will use a  hash function ℎ: # → [0,1]
Assumption: For distinct values in #, the function maps to iid
(independent and identically distributed) Unif(0,1) random numbers. 

Counting distinct elements

by
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Hash function ℎ: # → [0,1]
Assumption: For distinct values in #, the function maps to iid
(independent and identically distributed) Unif(0,1) random numbers. 

Important: if you were to feed in two equivalent elements, the function 
returns the same number. 
• So m distinct elements à m iid uniform *!’s

Counting distinct elements
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Min of IID Uniforms

If +", ⋯ , +# are iid Unif(0,1), where do we expect the points to end up? 

0 1
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E[min +" ] =

In general,  E min +", ⋯ , +# = ?D
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Min of IID Uniforms

If +", ⋯ , +# are iid Unif(0,1), where do we expect the points to end up? 
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If +", ⋯ , +# are iid Unif(0,1), then  E[min +", ⋯ , +# ] = "
#'"0
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Hash function ℎ: # → [0,1] (hashes to a uniform value).
• So m distinct elements à m iid uniform values.  

Counting distinct elements
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A super duper clever idea!!!!!

If +", ⋯ , +* are iid Unif(0,1), where do we expect the points to end up? 

In general,  E[min +", ⋯ , +# ] = "
#'"

Idea: m = !
*[,-. /!,⋯,/" ] − 1
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A super duper clever idea!!!!!

If +", ⋯ , +* are iid Unif(0,1), where do we expect the points to end up? 

In general,  E[min +", ⋯ , +# ] = "
#'"

Idea: m = !
*[,-. /!,⋯,/" ] − 1

Let’s keep track of the value val of min of hash values, 

and estimate 9 as Round "
+,- − 1



The Distinct Elements Algorithm



Stream:  13,   25,   19,   25,   19,   19

Hashes:

Distinct Elements Example
val=

Suppose	that
G HI = J. LH
G ML = J. MN
G HO = J. PO

od

0.51 0.265.797260.79 0179



Stream:  13,   25,   19,   25,   19,   19

Hashes:

Distinct Elements Example

val = infty



Stream:  13,   25,   19,   25,   19,   19

Hashes: 0.51, 

Distinct Elements Example

val = infty



Stream:  13,   25,   19,   25,   19,   19

Hashes: 0.51, 

Distinct Elements Example

val = 0.51 
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Hashes: 0.51, 0.26, 

Distinct Elements Example

val = 0.26 
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Hashes: 0.51, 0.26, 0.79, 

Distinct Elements Example

val = 0.26 
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Distinct Elements Example

val = 0.26 
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Stream:  13,   25,   19,   25,   19,   19

Hashes: 0.51, 0.26, 0.79, 0.26, 0.79, 0.79

Distinct Elements Example

val = 0.26 



Stream:  13,   25,   19,   25,   19,   19

Hashes: 0.51, 0.26, 0.79, 0.26, 0.79, 0.79

Distinct Elements Example

val = 0.26 

Return
round(1/0.26 - 1) =
round(2.846) = 3 at



Diy: Distinct Elements Example II

Stream: 11,   34,   89,  11,  89,   23

Hashes: 0.5, 0.21, 0.94, 0.5, 0.94, 0.1

val = 0.1

Return= 9 

o
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Problem

val = min +", ⋯ , +# E[345] = "
#'"

Algorithm: 
Track 345 = min ℎ 6" , ⋯ , ℎ 6) = min(+", ⋯ , +#)
estimate m = 1/ 345 -1

But, 345 is not E[345]! How far is 345 from E[345]? 

vantage In IIIT



Problem

val = min +", ⋯ , +# E[345] = "
#'"

Algorithm: 
Track 345 = min ℎ 6" , ⋯ , ℎ 6) = min(+", ⋯ , +#)
estimate m = 1/ 345 -1

Var 345 ≈ 1
9 + 1 $

But, 345 is not E[345]! How far is 345 from E[345]? 

What can we do to fix this?



How can we reduce the variance?

Idea: Repetition to reduce variance! 

indep



How can we reduce the variance?

Idea: Repetition to reduce variance! 
Use k independent hash functions ℎ", ℎ$, ⋯ ℎ.
Keep track of k independent min hash values 

345" = min ℎ" W" , ⋯ , ℎ" W) = min(Y"", ⋯ , +#" )
345$ = min ℎ$ W" , ⋯ , ℎ$ W) = min(Y"$, ⋯ , +#$)

…	…	
345. = min ℎ. W" , ⋯ , ℎ. W) = min(Y"/, ⋯ , +#.)

345 = "
. Σ!345!, Estimate 9 = "

+,- − 1
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