
CSE 312
Foundations of Computing II
Lecture 19: Application -- Distinct elements

1

Slide Credit: Based on Stefano Tessaro’s slides for 312 19au
incorporating ideas from Alex Tsun, Rachel Lin, Hunter Schafer & myself J

Anna R. Karlin

Data mining – Stream Model

● In many data mining situations, the data is not known ahead of time.
Examples: Google queries, Twitter or Facebook status updates

Youtube video views
● In some ways, best to think of the data as an infinite stream that is

non-stationary (distribution changes over time)

● Input elements (e.g. Google queries) enter/arrive one at a time.
We cannot possibly store the stream.

Question: How do we make critical calculations about the data stream
using a limited amount of memory?

Problem Setup

● Input: sequence of ! elements "!, "", … , "# from a known
universe % (e.g., 8-byte integers).

● Goal: perform a computation on the input, in a single left to
right pass where

○ Elements processed in real time

○ Can’t store the full data. => use minimal amount of storage while
maintaining working “summary”

What can we compute?

● Some functions are easy:

○ Min

○ Max

○ Sum

○ Average

32, 12, 14, 32, 7, 12, 32, 7, 32, 12, 4

99.1 PART

Today: Counting distinct elements

32, 12, 14, 32, 7, 12, 32, 7, 32, 12, 4

Application:

You are the content manager at YouTube, and you
are trying to figure out the distinct view count for a
video. How do we do that?

Note: A person can view their favorite videos
several times, but they only count as 1 distinct view!

Other applications

● IP packet streams: How many distinct IP addresses or IP flows
(source+destination IP, port, protocol)

* Anomaly detection, traffic monitoring
● Search: How many distinct search queries on Google on a certain topic

yesterday
● Web services: how many distinct users (cookies) searched/browsed a

certain term/item
* Advertising, marketing trends, etc.

Counting distinct elements

Want to compute number of distinct IDs in the stream.
How?

32, 12, 14, 32, 7, 12, 32, 7, 32, 12, 4
N = # of IDs in the stream = 11, m = # of distinct IDs in the stream = 5
or

Set

Counting distinct elements

Want to compute number of distinct IDs in the stream.
● Naïve solution: As the data stream comes in, store all distinct

IDs in a hash table.
● Space requirement O(m) , where m is the number of distinct IDs

● Consider the number of users of youtube, and the number of
videos on youtube. This is not feasible.

32, 12, 14, 32, 7, 12, 32, 7, 32, 12, 4
N = # of IDs in the stream = 11, m = # of distinct IDs in the stream = 5

Counting distinct elements

Want to compute number of distinct IDs in the stream.
● How to do this without storing all the elements?

Yet another super cool application of probability

32, 12, 14, 32, 7, 12, 32, 7, 32, 12, 4

10
This Photo by Unknown Author is licensed under CC BY-NC-ND

http://cybershamans.blogspot.com/2012/01/miercurea-fara-cuvinte-snow.html
https://creativecommons.org/licenses/by-nc-nd/3.0/

We will use a hash function ℎ: # → [0,1]
Assumption: For distinct values in #, the function maps to iid
(independent and identically distributed) Unif(0,1) random numbers.

Counting distinct elements

by

T U 0,1 k i

I x i next I ate

Hash function ℎ: # → [0,1]
Assumption: For distinct values in #, the function maps to iid
(independent and identically distributed) Unif(0,1) random numbers.

Important: if you were to feed in two equivalent elements, the function
returns the same number.
• So m distinct elements à m iid uniform *!’s

Counting distinct elements

32, 12, 14, 32, 7, 12, 32, 7, 32, 12, 4

!!, !", !#, !!, "$, !", !!, !%, !!, "&, "'

M different
hash value

OQ
h 32 h a D

Min of IID Uniforms

If +", ⋯ , +# are iid Unif(0,1), where do we expect the points to end up?

0 1
x! = 1

E[min +"] =

In general, E min +", ⋯ , +# = ?D

E Y L

Min of IID Uniforms

If +", ⋯ , +# are iid Unif(0,1), where do we expect the points to end up?

0 1

0 1

x

x x

! = 1

! = 2

E min +" = "
$

E min +", +$ = ?

In general, E min +", ⋯ , +# = ?

Min of IID Uniforms

If +", ⋯ , +# are iid Unif(0,1), where do we expect the points to end up?

0 1

0 1

0 1

x

x x

x x x x

! = 1

! = 2

! = 4

E[min +", ⋯ , +%] =

E min +" = "
$

E min +", +$ = "
&

In general, E min +", ⋯ , +# = ?

O

Min of IID Uniforms

If +", ⋯ , +# are iid Unif(0,1), where do we expect the points to end up?

0 1

0 1

0 1

x

x x

x x x x

! = 1

! = 2

! = 4
E[min +", ⋯ , +%] = "

%'" =
"
(

E[min +"] = "
"'" =

"
$

E[min +", +$] = "
$'" =

"
&

In general, E[min +", ⋯ , +#] = "
#'"D

17

If +", ⋯ , +# are iid Unif(0,1), then E[min +", ⋯ , +#] = "
#'"0

E X IxExdx

want to compute Fx x at togt

Pr mincing x It
Pry x Yax Yu x

Fay PIYx Pr Ya
x Prem x

x Fxx R min Ex l l X

fx x dxfxlxk.im G

E X x ma x dx I

Hash function ℎ: # → [0,1] (hashes to a uniform value).
• So m distinct elements à m iid uniform values.

Counting distinct elements

32, 12, 14, 32, 7, 12, 32, 7, 32, 12, 4

&$, &%, &&, &$, '', &%, &$, &(, &$, '", ')

345 = min ℎ 6" , ⋯ , ℎ 6) = min(+", ⋯ , +#)

O

00

E val I

A super duper clever idea!!!!!

If +", ⋯ , +* are iid Unif(0,1), where do we expect the points to end up?

In general, E[min +", ⋯ , +#] = "
#'"

Idea: m = !
*[,-. /!,⋯,/"] − 1

It

A super duper clever idea!!!!!

If +", ⋯ , +* are iid Unif(0,1), where do we expect the points to end up?

In general, E[min +", ⋯ , +#] = "
#'"

Idea: m = !
*[,-. /!,⋯,/"] − 1

Let’s keep track of the value val of min of hash values,

and estimate 9 as Round "
+,- − 1

The Distinct Elements Algorithm

Stream: 13, 25, 19, 25, 19, 19

Hashes:

Distinct Elements Example
val=

Suppose	that
G HI = J. LH
G ML = J. MN
G HO = J. PO

od

0.51 0.265.797260.79 0179

Stream: 13, 25, 19, 25, 19, 19

Hashes:

Distinct Elements Example

val = infty

Stream: 13, 25, 19, 25, 19, 19

Hashes: 0.51,

Distinct Elements Example

val = infty

Stream: 13, 25, 19, 25, 19, 19

Hashes: 0.51,

Distinct Elements Example

val = 0.51

Stream: 13, 25, 19, 25, 19, 19

Hashes: 0.51, 0.26,

Distinct Elements Example

val = 0.26

Stream: 13, 25, 19, 25, 19, 19

Hashes: 0.51, 0.26, 0.79,

Distinct Elements Example

val = 0.26

Stream: 13, 25, 19, 25, 19, 19

Hashes: 0.51, 0.26, 0.79, 0.26,

Distinct Elements Example

val = 0.26

Stream: 13, 25, 19, 25, 19, 19

Hashes: 0.51, 0.26, 0.79, 0.26, 0.79,

Distinct Elements Example

val = 0.26

Stream: 13, 25, 19, 25, 19, 19

Hashes: 0.51, 0.26, 0.79, 0.26, 0.79, 0.79

Distinct Elements Example

val = 0.26

Stream: 13, 25, 19, 25, 19, 19

Hashes: 0.51, 0.26, 0.79, 0.26, 0.79, 0.79

Distinct Elements Example

val = 0.26

Return
round(1/0.26 - 1) =
round(2.846) = 3 at

Diy: Distinct Elements Example II

Stream: 11, 34, 89, 11, 89, 23

Hashes: 0.5, 0.21, 0.94, 0.5, 0.94, 0.1

val = 0.1

Return= 9

o

row E D

Problem

val = min +", ⋯ , +# E[345] = "
#'"

Algorithm:
Track 345 = min ℎ 6" , ⋯ , ℎ 6) = min(+", ⋯ , +#)
estimate m = 1/ 345 -1

But, 345 is not E[345]! How far is 345 from E[345]?

vantage In IIIT

Problem

val = min +", ⋯ , +# E[345] = "
#'"

Algorithm:
Track 345 = min ℎ 6" , ⋯ , ℎ 6) = min(+", ⋯ , +#)
estimate m = 1/ 345 -1

Var 345 ≈ 1
9 + 1 $

But, 345 is not E[345]! How far is 345 from E[345]?

What can we do to fix this?

How can we reduce the variance?

Idea: Repetition to reduce variance!

indep

How can we reduce the variance?

Idea: Repetition to reduce variance!
Use k independent hash functions ℎ", ℎ$, ⋯ ℎ.
Keep track of k independent min hash values

345" = min ℎ" W" , ⋯ , ℎ" W) = min(Y"", ⋯ , +#")
345$ = min ℎ$ W" , ⋯ , ℎ$ W) = min(Y"$, ⋯ , +#$)

…	…	
345. = min ℎ. W" , ⋯ , ℎ. W) = min(Y"/, ⋯ , +#.)

345 = "
. Σ!345!, Estimate 9 = "

+,- − 1

Van ax
as Val X

TOH
Efay I SEEa IFEIT Xt

37

Vor fal Van t Eval ta v Eva

K and

aft
I Ven tali

til

h U on im

Construct afamily If ghashtus

7 h hah ha

pick
he to.a eat

theoprthoiffy
É

t 6
chug

h of

