SSE 312

Foundations of Computing II

Lecture 17: CLT and Polling

w

PAUL G. ALLEN SCHOOL of computer science \& engineering

Anna R. Marlin

Slide Credit: Based on Stefano Tessaro's slides for 312 19au incorporating ideas from Alex Thun, Rachel Lin, Hunter Schafer \& myself ©

quiz out Monday Wpm on canvas

The Normal Distribution

Definition. A Gaussian (or normal) random variable with parameters $\mu \in \mathbb{R}$ and $\sigma \geq 0$ has density

$$
f_{X}(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}
$$

(We say that X follows the Normal Distribution, and write $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$)

$$
\text { Fact. If } X \sim \mathcal{N}\left(\mu, \sigma^{2}\right) \text {, then } \mathbb{E}(X)=\mu \text {, and } \operatorname{Var}(X)=\sigma^{2}
$$

Proof is easy because density curve is symmetric around $\mu, f_{X}(\mu-x)=f_{X}(\mu+x)$

The Normal Distribution

Aka a "Bell Curve" (imprecise name)

CDF of normal distribution

Fact. If $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$, then $Y=a X+b \sim \mathcal{N}\left(a \mu+b, a^{2} \sigma^{2}\right)$
Standard (unit) normal $Z \underset{Z}{\sim} \stackrel{\downarrow}{\sim}(0,1)$
CDF. $\Phi(z)=\mathbb{P}(Z \leq z)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{Z} e^{-x^{2} / 2} \mathrm{~d} x$ for $Z \sim \mathcal{N}(0,1)$
Note: $\Phi(z)$ has no closed form - generally given via tables

Table of $\Phi(z)$ CDF of Standard Normal Distn

Φ Table: $\mathbb{P}(Z \leq z)$ when $Z \sim \mathcal{N}(0,1)$

z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5	0.50399	0.50798	0.51197	0.51595	0.51994	0.52392	0.5279	0.53188	0.53586
0.1	0.53983	0.5438	0.54776	0.55172	0.55567	0.55962	0.56356	0.56749	0.57142	0.57535
0.2	0.57926	0.58317	0.58706	0.59095	0.59483	0.59871	0.60257	0.60642	0.61026	0.61409
0.3	0.61791	0.62172	0.62552	0.6293	0.63307	0.63683	0.64058	0.64431	0.64803	0.65173
0.4	0.65542	0.6591	0.66276	0.6664	0.67003	0.67364	0.67724	0.68082	0.68439	0.68793
0.5	0.69146	0.69497	0.69847	0.70194	0.7054	0.70884	0.71226	0.71566	0.71904	0.7224
0.6	0.72575	0.72907	0.73237	0.73565	0.73891	0.74215	0.74537	0.74857	0.75175	0.7549
0.7	0.75804	0.76115	0.76424	0.7673	0.77035	0.77337	0.77637	0.77935	0.7823	0.78524
0.8	0.78814	0.79103	0.79389	0.79673	0.79955	0.80234	0.80511	0.80785	0.81057	0.81327
0.9	0.81594	0.81859	0.82121	0.82381	0.82639	0.82894	0.83147	0.83398	0.83646	0.83891
1.0	0.84134	0.84375	0.84614	0.84849	0.85083	0.85314	0.85543	0.85769	0.85993	0.86214
1.1	0.86433	0.8665	0.86864	0.87076	0.87286	0.87493	0.87698	0.879	0.881	0.88298
1.2	0.88493	0.88686	0.88877	0.89065	0.89251	0.89435	0.89617	0.89796	0.89973	0.90147
1.3	0.9032	0.9049	0.90658	0.90824	0.90988	0.91149	0.91309	0.91466	0.91621	0.91774
1.4	0.91924	0.92073	0.9222	0.92364	0.92507	0.92647	0.92785	0.92922	0.93056	0.93189
1.5	0.93319	0.93448	0.93574	0.93699	0.93822	0.93943	0.94062	0.94179	0.94295	0.94408
1.6	0.9452	0.9463	0.94738	0.94845	0.9495	0.95053	0.95154	0.95254	0.95352	0.95449
1.7	0.95543	0.95637	0.95728	0.95818	0.95907	0.95994	0.9608	0.96164	0.96246	0.96327
1.8	0.96407	0.96485	0.96562	0.96638	0.96712	0.96784	0.96856	0.96926	0.96995	0.97062
1.9	0.97128	0.97193	0.97257	0.9732	0.97381	0.97441	0.975	0.97558	0.97615	0.9767
2.0	0.97725	0.97778	0.97831	0.97882	0.97932	0.97982	0.9803	0.98077	0.98124	0.98169
2.1	0.98214	0.98257	0.983	0.98341	0.98382	0.98422	0.98461	0.985	0.98537	0.98574
2.2	0.9861	0.98645	0.98679	0.98713	0.98745	0.98778	0.98809	0.9884	0.9887	0.98899
2.3	0.98928	0.98956	0.98983	0.9901	0.99036	0.99061	0.99086	0.99111	0.99134	0.99158
2.4	0.9918	0.99202	0.99224	0.99245	0.99266	0.99286	0.99305	0.99324	0.99343	0.99361
2.5	0.99379	0.99396	0.99413	0.9943	0.99446	0.99461	0.99477	0.99492	0.99506	0.9952
2.6	0.99534	0.99547	0.9956	0.99573	0.99585	0.99598	0.99609	0.99621	0.99632	0.99643
2.7	0.99653	0.99664	0.99674	0.99683	0.99693	0.99702	0.99711	0.9972	0.99728	0.99736
2.8	0.99744	0.99752	0.9976	0.99767	0.99774	0.99781	0.99788	0.99795	0.99801	0.99807
2.9	0.99813	0.99819	0.99825	0.99831	0.99836	0.99841	0.99846	0.99851	0.99856	0.99861
3.0	0.99865	0.99869	0.99874	0.99878	0.99882	0.99886	0.99889	0.99893	0.99896	0.999

What about Non-standard normal?

If $\left.X \sim \underline{\mathcal{N}\left(\mu, \sigma^{2}\right.}\right)$, then $\frac{X-\mu}{\sigma} \sim \mathcal{N}(0,1)$

Therefore,

$$
\begin{gathered}
\left.F_{X}(z)=\mathbb{P}(X \leq(2))=\mathbb{P}\left(\frac{X-\mu}{\sigma}\right) \leq \frac{z-\mu}{\sigma}\right)=\Phi\left(\frac{z-\mu}{\sigma}\right) \\
Z \sim N(0,1)
\end{gathered}
$$

Agenda

- Central Limit Theorem (CLT)
- Polling

CLT \rightarrow empirical distribution of data often Gaussian

S\&P 500 Returns after Elections

Sum of Independent RVs

i.i.d. = independent and identically distributed
X_{1}, \ldots, X_{n} i.i.d. with expectation μ and variance σ^{2}

Define

$$
S_{n}=X_{1}+\cdots+X_{n}
$$

$\mathbb{E}\left(S_{n}\right)=\mathbb{E}\left(X_{1}\right)+\cdots+\mathbb{E}\left(X_{n}\right)=n \mu$
$\operatorname{Var}\left(S_{n}\right)=\operatorname{Var}\left(X_{1}\right)+\cdots+\operatorname{Var}\left(X_{n}\right)=n \sigma^{2}$
Empirical observation: S_{n} looks like a normal RV as n grows.

Setup for Central Limit Theorem

X_{1}, \ldots, X_{n} i.i.d., each with expectation μ and variance σ^{2}

Define $S_{n}=X_{1}+\cdots+X_{n}$ and

$$
Y_{n}=\frac{S_{n}-n \mu}{\sigma \sqrt{n}}
$$

$$
\mathbb{E}\left(Y_{n}\right)=\frac{1}{\sigma \sqrt{n}}\left(\mathbb{E}\left(S_{n}\right)-n \mu\right)=\frac{1}{\sigma \sqrt{n}}(n \mu-n \mu)=0
$$

$\operatorname{Var}\left(Y_{n}\right)=\frac{1}{\sigma^{2} n}\left(\operatorname{Var}\left(S_{n}-n \mu\right)\right)=\frac{\operatorname{Var}\left(S_{n}\right)}{\sigma^{2} n}=\frac{\sigma^{2} n}{\sigma^{2} n}=1$

$$
Y_{n}=\frac{X_{1}+\cdots+X_{n}-n \mu}{\sigma \sqrt{n}}
$$

Theorem. (Central Limit Theorem) The CDF of Y_{n} converges to the CDF of the standard normal $\mathcal{N}(0,1)$, i.e.,

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left(Y_{n} \leq y\right)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{y} e^{-x^{2} / 2} \mathrm{~d} x=\AA(y)
$$

Also stated as:

- $\lim _{n \rightarrow \infty} Y_{n} \rightarrow \mathcal{N}(0,1)$
ζ
$x_{1}+K_{2}+x_{n} \approx N\left(n \mu, n^{2}\right)$
- $\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} X_{i} \rightarrow \mathcal{N}\left(\mu, \frac{\sigma^{2}}{n}\right)$ where $\mu=E\left[X_{i}\right]$ and $\sigma^{2}=\operatorname{Var}\left(X_{i}\right)$

$$
E\left(n \sum_{i=1}^{n} x_{i}\right)=\mu \quad \operatorname{Van}\left(\frac{1}{n} \sum_{i=1}^{n} x\right)=\frac{1}{n^{2}} \frac{\operatorname{Van}\left(\frac{2 x}{2}\right)}{n \sigma^{2}}
$$

$$
=\frac{\sigma^{2}}{n}
$$

Agenda

- Central Limit Theorem (CLT)
- Polling

Magic Mushrooms

Not that long ago, Oregonians voted on whether to legalize the therapeutic use of "magic mushrooms".

Poll to determine the fraction of the population that will vote in favor of legalization.

- Call up a random sample of n people to ask their opinion
- Report the empirical fraction

Questions

- Is this a good estimate?
- How to choose n ?

Polling Accuracy

Often see claims that say
"Our poll found 80% support. This poll is accurate to within 5% with 98% probability"

Will unpack what this means and how they sample enough people to know this is true.

Formalizing Polls

Population size N, true fraction of voting in favor p, sample size π. Problem: We don't know p

Polling Procedure

for $\mathrm{i}=1$... n :

1. Pick uniformly random person to call (prob: $1 / N$)
2. Ask them how they will vote

$$
X_{i}=\left\{\begin{array}{lr}
1, & \text { voting in favor } \\
0, & \text { otherwise }
\end{array}\right.
$$

Report our estimate of p :

$$
\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i}
$$

$$
\left.E\left(x^{2}\right)-E(x)\right)^{2}
$$

Formalizing Polls

Population size N, true fraction of voting in favor p, sample size n.

Problem: We don't know p

Polling Procedure

 for $\mathrm{i}=1$... n :1. Pick uniformly random person to call (prob: $1 / N$)
2. Ask them how they will vote

$$
X_{i}=\left\{\begin{array}{lr}
1, \\
0, & \text { voting in favor } \\
\text { otherwise }
\end{array}\right.
$$

Random Variables

What type of rev. is X_{i} ?

$$
X:
$$

$$
\begin{array}{ll}
E & V m \\
p & p(1-p)
\end{array}
$$

https://pollev.com/ annakarlin185

What can you say about
$\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$?
$E(\bar{x})=\frac{1}{n} \frac{\sum_{i=1}^{n} E\left(x_{i}\right)}{n p}=p$
$\operatorname{Vaf}\left(\frac{1}{n} \sum_{i=1}^{n} x_{1}\right)=\frac{1}{n^{2}} \frac{\operatorname{Va}\left(\sum x_{i}\right)}{n p(1-0)}$

Roadmap: Bounding Error

Goal: Find the value of n such that 98% ff the time, the estimate \bar{X} is within 5% of the true \bar{p}.

badevert \bar{x} lands ort side.
Choose n st.

$p^{-0.05} \leq \vec{x} \leq p-0.05$

Central Limit Theorem

With i.i.d random variables $X_{1}, X_{2}, \ldots, X_{n}$ where $E\left[X_{i}\right]=\mu$ and $\operatorname{Var}\left(X_{i}\right)=\sigma^{2}$

As $n \rightarrow \infty$,

$$
\frac{X_{1}+X_{2}+\cdots X_{n}-n \mu}{\sigma \sqrt{n}} \rightarrow \mathcal{N}(0,1)
$$

Restated: As $n \rightarrow \infty$,

$$
\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i} \rightarrow \mathcal{N}\left(\mu, \frac{\sigma^{2}}{n}\right)
$$

Central Limit Theorem

With i.i.d random variables $X_{1}, X_{2}, \ldots, X_{n}$ where $E\left[X_{i}\right]=\mu$ and $\operatorname{Var}\left(X_{i}\right)=\sigma^{2}$
https://pollev.com/ annakarlin185

$$
\begin{aligned}
& \text { Poll: In the limit } \overline{\mathrm{X}} \text { is ? } \\
& \text { a. } \mathcal{N}(0,1) \\
& \text { b. } \mathcal{N}(p, p(1-p)) \\
& \text { c. } \mathcal{N}(p, p(1-p) / n) \\
& \text { d. I don't know. }
\end{aligned}
$$

As $n \rightarrow \infty$,

$$
\frac{X_{1}+X_{2}+\cdots X_{n}-n \mu}{\sigma \sqrt{n}} \rightarrow \mathcal{N}(0,1)
$$

Restated: As $n \rightarrow \infty$,

$$
\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i} \rightarrow \mathcal{N}\left(\frac{\sigma^{2}}{n}\right)
$$

\forall normed dish 99° \% jpudornaso
iswitn 3σ dean.

Roadmap: Bounding Error

Goal: Find the value of n such that 98% of the time, the estimate \bar{X} is within 5% of the true p

1. Define probability of a "bad event"
2. Apply CLT
3. Convert to a standard normal
4. Solve for n

$$
\bar{X} \sim N\left(p, \frac{p(1 p)}{n}\right)
$$

Define probability of a "bad event"

$$
\begin{aligned}
& \operatorname{Pr}\left(\left|\bar{x}_{-p}\right|>0.05\right) \\
& =\operatorname{Pr}\left(\frac{|\bar{x}-\mathrm{p}|}{\sqrt{\frac{\pi-0}{n}}}>\frac{0.05}{\sqrt{\frac{p+\pi p}{n}}}\right)
\end{aligned}
$$

$$
p(1-p) \leq\left(\frac{1}{4}\right)
$$

$$
\begin{aligned}
& \left(\frac{0.05 \sqrt{n}}{\sqrt{p(1-p)}} \geqslant \frac{0.05 \sqrt{n}}{\sqrt{4}}\right)^{0}=0.1 \sqrt{\frac{1}{2}} \\
& -\operatorname{Pr}\left(|2|>\frac{0.05 \sqrt{n}}{\sqrt{p(1-p)}}\right) \leqslant \operatorname{Pr}(|2|>0.1 \sqrt{n}
\end{aligned}
$$

$$
\begin{aligned}
& \quad \operatorname{Pr}(121>0.1 \sqrt{n})<0.02 \\
& \operatorname{Pr}(z>0.1 \sqrt{n})+\operatorname{Pr}(2<-0.1 \sqrt{n}) \\
&= 2 \operatorname{Pr}(z>0.1 \sqrt{n}) \\
&= 2(1-\operatorname{Pr}(2 \leq 0.1 \sqrt{n})) \leq 0.02 \\
& \Phi(0.1 \sqrt{n}) \\
& 2(1-\phi(0.1 \sqrt{n})) \\
& 1-\phi(0.1 \sqrt{n}) \leq 0.02 \\
&0.99) \leq \phi 0.1 \sqrt{n}
\end{aligned}
$$

Solve for n

$$
\begin{aligned}
0.1 \sqrt{n} & \geqslant 2.33 \\
\sqrt{n} & \geqslant \frac{2.33}{0.1} \\
\bar{X} \sim N\left(p, \frac{p(1-p)}{n}\right) \quad n & \geqslant\left(\frac{2.33}{0.1}\right)^{2}=543
\end{aligned}
$$

for mat en is

Table of $\Phi(z)$ CDF of Standard Normal Distn

Φ Table: $\mathbb{P}(Z \leq z)$ when $Z \sim \mathcal{N}(0,1)$

armanormany

Idealized Polling

So far, we have been discussing "idealized polling". Real life is normally not so nice :

Assumed we can sample people uniformly at random, not really possible in practice

- Not everyone responds
- Response rates might differ in different groups
- Will people respond truthfully?

Makes polling in real life much more complex than this idealized model!

